I have been asked about problems with the code from the Graphics with ggplot2 from Quick-R

library(ggplot2)

Note the use of the data() function. This reads the mtcars dataset into R cleanly before trying to re-label of the factors.

Sometimes there are problems running and rerunning ones code on the mtcars dataset.

data(mtcars)
# create factors with value labels
mtcars$gear <- factor(mtcars$gear,levels=c(3,4,5),
   labels=c("3gears","4gears","5gears"))
mtcars$am <- factor(mtcars$am,levels=c(0,1),
   labels=c("Automatic","Manual"))
mtcars$cyl <- factor(mtcars$cyl,levels=c(4,6,8),
   labels=c("4cyl","6cyl","8cyl"))
mtcars
# Kernel density plots for mpg
# grouped by number of gears (indicated by color)
qplot(mpg, data=mtcars, geom="density", fill=gear, alpha=I(.5),
   main="Distribution of Gas Milage", xlab="Miles Per Gallon",
   ylab="Density")

# Scatterplot of mpg vs. hp for each combination of gears and cylinders
# in each facet, transmittion type is represented by shape and color
qplot(hp, mpg, data=mtcars, shape=am, color=am,
   facets=gear~cyl, size=I(3),
   xlab="Horsepower", ylab="Miles per Gallon")

# Separate regressions of mpg on weight for each number of cylinders
qplot(wt, mpg, data=mtcars, geom=c("point", "smooth"),
   method="lm", formula=y~x, color=cyl,
   main="Regression of MPG on Weight",
   xlab="Weight", ylab="Miles per Gallon")
Ignoring unknown parameters: method, formula

# Boxplots of mpg by number of gears
# observations (points) are overlayed and jittered
qplot(gear, mpg, data=mtcars, geom=c("boxplot", "jitter"),
   fill=gear, main="Mileage by Gear Number",
   xlab="", ylab="Miles per Gallon") 

library(ggplot2)
p <- qplot(hp, mpg, data=mtcars, shape=am, color=am,
   facets=gear~cyl, main="Scatterplots of MPG vs. Horsepower",
   xlab="Horsepower", ylab="Miles per Gallon")
# White background and black grid lines
p + theme_bw()

# Large brown bold italics labels
# and legend placed at top of plot
p + theme(axis.title=element_text(face="bold.italic",
   size="12", color="brown"), legend.position="top") 

LS0tCnRpdGxlOiAiUXVpY2tSIC0gR3JhcGhpY3Mgd2l0aCBnZ3Bsb3QyIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpJIGhhdmUgYmVlbiBhc2tlZCBhYm91dCBwcm9ibGVtcyB3aXRoIHRoZSBjb2RlIGZyb20gdGhlIFtHcmFwaGljcyB3aXRoIGdncGxvdDJdKGh0dHBzOi8vd3d3LnN0YXRtZXRob2RzLm5ldC9hZHZncmFwaHMvZ2dwbG90Mi5odG1sKSBmcm9tIFtRdWljay1SXShodHRwczovL3d3dy5zdGF0bWV0aG9kcy5uZXQvaW5kZXguaHRtbCkKCmBgYHtyfQpsaWJyYXJ5KGdncGxvdDIpCmBgYAoKTm90ZSB0aGUgdXNlIG9mIHRoZSAqZGF0YSgpKiBmdW5jdGlvbi4gIFRoaXMgcmVhZHMgdGhlICptdGNhcnMqIGRhdGFzZXQgaW50byBSIGNsZWFubHkgYmVmb3JlIHRyeWluZyB0byByZS1sYWJlbCBvZiB0aGUgZmFjdG9ycy4KClNvbWV0aW1lcyB0aGVyZSBhcmUgcHJvYmxlbXMgcnVubmluZyBhbmQgcmVydW5uaW5nIG9uZXMgY29kZSBvbiB0aGUgbXRjYXJzIGRhdGFzZXQuCgpgYGB7cn0KZGF0YShtdGNhcnMpCgojIGNyZWF0ZSBmYWN0b3JzIHdpdGggdmFsdWUgbGFiZWxzCm10Y2FycyRnZWFyIDwtIGZhY3RvcihtdGNhcnMkZ2VhcixsZXZlbHM9YygzLDQsNSksCiAgIGxhYmVscz1jKCIzZ2VhcnMiLCI0Z2VhcnMiLCI1Z2VhcnMiKSkKCm10Y2FycyRhbSA8LSBmYWN0b3IobXRjYXJzJGFtLGxldmVscz1jKDAsMSksCiAgIGxhYmVscz1jKCJBdXRvbWF0aWMiLCJNYW51YWwiKSkKCm10Y2FycyRjeWwgPC0gZmFjdG9yKG10Y2FycyRjeWwsbGV2ZWxzPWMoNCw2LDgpLAogICBsYWJlbHM9YygiNGN5bCIsIjZjeWwiLCI4Y3lsIikpCgptdGNhcnMKYGBgCgpgYGB7cn0KIyBLZXJuZWwgZGVuc2l0eSBwbG90cyBmb3IgbXBnCiMgZ3JvdXBlZCBieSBudW1iZXIgb2YgZ2VhcnMgKGluZGljYXRlZCBieSBjb2xvcikKcXBsb3QobXBnLCBkYXRhPW10Y2FycywgZ2VvbT0iZGVuc2l0eSIsIGZpbGw9Z2VhciwgYWxwaGE9SSguNSksCiAgIG1haW49IkRpc3RyaWJ1dGlvbiBvZiBHYXMgTWlsYWdlIiwgeGxhYj0iTWlsZXMgUGVyIEdhbGxvbiIsCiAgIHlsYWI9IkRlbnNpdHkiKQpgYGAKCmBgYHtyfQojIFNjYXR0ZXJwbG90IG9mIG1wZyB2cy4gaHAgZm9yIGVhY2ggY29tYmluYXRpb24gb2YgZ2VhcnMgYW5kIGN5bGluZGVycwojIGluIGVhY2ggZmFjZXQsIHRyYW5zbWl0dGlvbiB0eXBlIGlzIHJlcHJlc2VudGVkIGJ5IHNoYXBlIGFuZCBjb2xvcgpxcGxvdChocCwgbXBnLCBkYXRhPW10Y2Fycywgc2hhcGU9YW0sIGNvbG9yPWFtLAogICBmYWNldHM9Z2Vhcn5jeWwsIHNpemU9SSgzKSwKICAgeGxhYj0iSG9yc2Vwb3dlciIsIHlsYWI9Ik1pbGVzIHBlciBHYWxsb24iKQpgYGAKCmBgYHtyfQojIFNlcGFyYXRlIHJlZ3Jlc3Npb25zIG9mIG1wZyBvbiB3ZWlnaHQgZm9yIGVhY2ggbnVtYmVyIG9mIGN5bGluZGVycwpxcGxvdCh3dCwgbXBnLCBkYXRhPW10Y2FycywgZ2VvbT1jKCJwb2ludCIsICJzbW9vdGgiKSwKICAgbWV0aG9kPSJsbSIsIGZvcm11bGE9eX54LCBjb2xvcj1jeWwsCiAgIG1haW49IlJlZ3Jlc3Npb24gb2YgTVBHIG9uIFdlaWdodCIsCiAgIHhsYWI9IldlaWdodCIsIHlsYWI9Ik1pbGVzIHBlciBHYWxsb24iKQpgYGAKCmBgYHtyfQojIEJveHBsb3RzIG9mIG1wZyBieSBudW1iZXIgb2YgZ2VhcnMKIyBvYnNlcnZhdGlvbnMgKHBvaW50cykgYXJlIG92ZXJsYXllZCBhbmQgaml0dGVyZWQKcXBsb3QoZ2VhciwgbXBnLCBkYXRhPW10Y2FycywgZ2VvbT1jKCJib3hwbG90IiwgImppdHRlciIpLAogICBmaWxsPWdlYXIsIG1haW49Ik1pbGVhZ2UgYnkgR2VhciBOdW1iZXIiLAogICB4bGFiPSIiLCB5bGFiPSJNaWxlcyBwZXIgR2FsbG9uIikgCmBgYAoKCmBgYHtyfQpsaWJyYXJ5KGdncGxvdDIpCgpwIDwtIHFwbG90KGhwLCBtcGcsIGRhdGE9bXRjYXJzLCBzaGFwZT1hbSwgY29sb3I9YW0sCiAgIGZhY2V0cz1nZWFyfmN5bCwgbWFpbj0iU2NhdHRlcnBsb3RzIG9mIE1QRyB2cy4gSG9yc2Vwb3dlciIsCiAgIHhsYWI9IkhvcnNlcG93ZXIiLCB5bGFiPSJNaWxlcyBwZXIgR2FsbG9uIikKCiMgV2hpdGUgYmFja2dyb3VuZCBhbmQgYmxhY2sgZ3JpZCBsaW5lcwpwICsgdGhlbWVfYncoKQoKIyBMYXJnZSBicm93biBib2xkIGl0YWxpY3MgbGFiZWxzCiMgYW5kIGxlZ2VuZCBwbGFjZWQgYXQgdG9wIG9mIHBsb3QKcCArIHRoZW1lKGF4aXMudGl0bGU9ZWxlbWVudF90ZXh0KGZhY2U9ImJvbGQuaXRhbGljIiwKICAgc2l6ZT0iMTIiLCBjb2xvcj0iYnJvd24iKSwgbGVnZW5kLnBvc2l0aW9uPSJ0b3AiKSAKYGBgCg==