4.2.The data set Abortion in vcdExtra gives a 2 Ă— 2 Ă— 2 table of opinions regarding abortion in relation to sex and status of the respondent. This table has the following
data("Abortion", package="vcdExtra")
str(Abortion)
## table [1:2, 1:2, 1:2] 171 152 138 167 79 148 112 133
## - attr(*, "dimnames")=List of 3
## ..$ Sex : chr [1:2] "Female" "Male"
## ..$ Status : chr [1:2] "Lo" "Hi"
## ..$ Support_Abortion: chr [1:2] "Yes" "No"
values.
# plot associate stratified by status
fourfold(Abortion)
# Oddsratio
oddsratio1 <- oddsratio(Abortion, stratum="Status", log=FALSE)
oddsratio1
## odds ratios for Sex and Status by Support_Abortion
##
## Lo Hi
## 1.3614130 0.6338682
summary(oddsratio(Abortion, stratum="Status"))
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## Lo 0.30852 0.16019 1.9260 0.05411 .
## Hi -0.45591 0.18937 -2.4075 0.01606 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(oddsratio1)
#plot stratified by sex
fourfold(aperm(Abortion))
#plot odds ratio
oddsratio2 <- oddsratio(Abortion, stratum="Sex", log=FALSE)
oddsratio2
## odds ratios for Sex and Status by Support_Abortion
##
## Female Male
## 1.3614130 0.6338682
plot(oddsratio2)
####(c) write a brief summary of how support for abortion depends on sex and status.
confint(oddsratio(Abortion, log=FALSE))
## 2.5 % 97.5 %
## Yes 0.9945685 1.8635675
## No 0.4373246 0.9187431
Both the odds ratio stratified by Sex and Status are not equal to 1. therefore, we can say the two groups (Sex/ Stratum) support abortion rate are not the same.
a <- cbind(x1= c(24, 8, 10 ,42), x2=c(8,13,9, 30),
x3=c(13,11, 64, 88), x4=c(45,32, 83,160))
colnames(a) <- c("con", "mixed", "pro", "total")
rownames(a) <- c("con", "mixed", "pro", "total")
movie <- as.table(a)
movie
## con mixed pro total
## con 24 8 13 45
## mixed 8 13 11 32
## pro 10 9 64 83
## total 42 30 88 160
Kappa(movie)
## value ASE z Pr(>|z|)
## Unweighted 0.09012 0.02882 3.127 0.001767
## Weighted 0.08737 0.03372 2.591 0.009573
agreementplot(movie)