##### The contribution of Earth observation technologies to the reporting obligations#### 
###of the Habitats Directive and Natura 2000 network in a protected wetland #####
# Authors: Adrian Regos & Jesus Dominguez (University of Santiago de Compostela & CIOBIO/InBIO)##

################################################################################################ 
#### Pre-processing of Landsat images for year 2003, classification and validation procedures###  
################################################################################################ 

library(RStoolbox) 
library(raster)
## Loading required package: sp
library(rgdal)
## rgdal: version: 1.2-8, (SVN revision 663)
##  Geospatial Data Abstraction Library extensions to R successfully loaded
##  Loaded GDAL runtime: GDAL 2.0.1, released 2015/09/15
##  Path to GDAL shared files: C:/Users/Usuario/Documents/R/win-library/3.4/rgdal/gdal
##  Loaded PROJ.4 runtime: Rel. 4.9.2, 08 September 2015, [PJ_VERSION: 492]
##  Path to PROJ.4 shared files: C:/Users/Usuario/Documents/R/win-library/3.4/rgdal/proj
##  Linking to sp version: 1.2-5
metaL7Mar2003 <- readMeta("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/LandsatData/2003/LE72050302003079EDC00/LE72050302003079EDC00_MTL.txt")
metaL5Oct2003 <- readMeta("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/LandsatData/2003/LT52050302003279MTI01/LT52050302003279MTI01_MTL.txt")

summary(metaL7Mar2003)
## Scene:      LE72050302003079EDC00 
## Satellite:  LANDSAT7 
## Sensor:     ETM 
## Date:       2003-03-20 
## Path/Row:   205/30 
## Projection: +proj=utm +zone=29 +units=m +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
## 
## Data:
##                                            FILES QUANTITY CATEGORY
## B1_dn               LE72050302003079EDC00_B1.TIF       dn    image
## B2_dn               LE72050302003079EDC00_B2.TIF       dn    image
## B3_dn               LE72050302003079EDC00_B3.TIF       dn    image
## B4_dn               LE72050302003079EDC00_B4.TIF       dn    image
## B5_dn               LE72050302003079EDC00_B5.TIF       dn    image
## B6_VCID_1_dn LE72050302003079EDC00_B6_VCID_1.TIF       dn    image
## B6_VCID_2_dn LE72050302003079EDC00_B6_VCID_2.TIF       dn    image
## B7_dn               LE72050302003079EDC00_B7.TIF       dn    image
## B8_dn               LE72050302003079EDC00_B8.TIF       dn      pan
## 
## Available calibration parameters (gain and offset):
##  dn -> radiance (toa)
##  dn -> brightness temperature (toa)
summary(metaL5Oct2003)
## Scene:      LT52050302003279MTI01 
## Satellite:  LANDSAT5 
## Sensor:     TM 
## Date:       2003-10-06 
## Path/Row:   205/30 
## Projection: +proj=utm +zone=29 +units=m +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
## 
## Data:
##                              FILES QUANTITY CATEGORY
## B1_dn LT52050302003279MTI01_B1.TIF       dn    image
## B2_dn LT52050302003279MTI01_B2.TIF       dn    image
## B3_dn LT52050302003279MTI01_B3.TIF       dn    image
## B4_dn LT52050302003279MTI01_B4.TIF       dn    image
## B5_dn LT52050302003279MTI01_B5.TIF       dn    image
## B6_dn LT52050302003279MTI01_B6.TIF       dn    image
## B7_dn LT52050302003279MTI01_B7.TIF       dn    image
## 
## Available calibration parameters (gain and offset):
##  dn -> radiance (toa)
##  dn -> brightness temperature (toa)
L7Mar2003 <- stackMeta(metaL7Mar2003)
L5Oct2003 <- stackMeta(metaL5Oct2003)

################### calibration and radiometric correction if necessary
#Data conversion: From DNs to Reflectances
#Radiometric calibration
metaL7Mar2003$CALRAD
##                offset  gain
## B1_dn        -6.97874 0.779
## B2_dn        -7.19882 0.799
## B3_dn        -5.62165 0.622
## B4_dn        -5.73976 0.640
## B5_dn        -1.12622 0.126
## B6_VCID_1_dn -0.06709 0.067
## B6_VCID_2_dn  3.16280 0.037
## B7_dn        -0.39390 0.044
## B8_dn        -5.67559 0.976
metaL5Oct2003$CALRAD
##         offset  gain
## B1_dn -2.28583 0.766
## B2_dn -4.28819 1.448
## B3_dn -2.21398 1.044
## B4_dn -2.38602 0.876
## B5_dn -0.49035 0.120
## B6_dn  1.18243 0.055
## B7_dn -0.21555 0.066
L7Mar2003_rad <- radCor(L7Mar2003, metaData = metaL7Mar2003, method="rad")
L5Oct2003_rad <- radCor(L5Oct2003, metaData = metaL5Oct2003, method="rad")
dataType(L7Mar2003_rad[[1]]) #dataType from integer to float
## [1] "FLT8S"
dataType(L5Oct2003_rad[[1]])
## [1] "FLT8S"
plotRGB(L7Mar2003_rad, r = 3, g = 2, b = 1, stretch = "lin")

plot(L7Mar2003_rad)

plotRGB(L5Oct2003_rad, r = 3, g = 2, b = 1, stretch = "lin")

plot(L5Oct2003_rad)

##crop the images to our study area (Natural Park - Corrubedo)
study_area <- readOGR("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/AreaEstudio/LimiteParque", "PNCorrubedo_reproj")
## OGR data source with driver: ESRI Shapefile 
## Source: "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/AreaEstudio/LimiteParque", layer: "PNCorrubedo_reproj"
## with 1 features
## It has 10 fields
#March
L7Mar2003_rad_PN <- crop(L7Mar2003_rad,study_area)
L7Mar2003_rad_PN_mask <- mask(L7Mar2003_rad_PN, study_area)
plotRGB(L7Mar2003_rad_PN_mask, r = 3, g = 2, b = 1, stretch = "hist")#rgb

plotRGB(L7Mar2003_rad_PN_mask, r = 5, g = 4, b = 2, stretch = "hist")#vegetation

plotRGB(L7Mar2003_rad_PN_mask, r = 4, g = 5, b = 1, stretch = "hist")# brown

plotRGB(L7Mar2003_rad_PN_mask, r = 4, g = 3, b = 2, stretch = "hist")# brown

#October
L5Oct2003_rad_PN <- crop(L5Oct2003_rad,study_area)
L5Oct2003_rad_PN_mask <- mask(L5Oct2003_rad_PN,study_area)
plotRGB(L5Oct2003_rad_PN_mask, r = 3, g = 2, b = 1, stretch = "hist")#rgb

plotRGB(L5Oct2003_rad_PN_mask, r = 5, g = 4, b = 2, stretch = "hist")#vegetation

plotRGB(L5Oct2003_rad_PN_mask, r = 4, g = 5, b = 1, stretch = "hist")# brown

plotRGB(L5Oct2003_rad_PN_mask, r = 4, g = 3, b = 2, stretch = "hist")#red

#Spectral index - Normalised Difference Water Index: NDWI = (green - nir)/(green + nir)
NDWI_Mar <- spectralIndices(L7Mar2003_rad_PN_mask, blue = "B1_tra", green = "B2_tra", red = "B3_tra", 
                            nir = "B4_tra", swir2 = "B5_tra", indices = "NDWI")#
NDWI_Oct <- spectralIndices(L5Oct2003_rad_PN_mask, blue = "B1_tra", green = "B2_tra", red = "B3_tra", 
                            nir = "B4_tra", swir2 = "B5_tra", indices = "NDWI")#
NDVI_Mar <- spectralIndices(L7Mar2003_rad_PN_mask, blue = "B1_tra", green = "B2_tra", red = "B3_tra", 
                            nir = "B4_tra", swir2 = "B5_tra", indices = "NDVI")#
NDVI_Oct <- spectralIndices(L5Oct2003_rad_PN_mask, blue = "B1_tra", green = "B2_tra", red = "B3_tra", 
                            nir = "B4_tra", swir2 = "B5_tra", indices = "NDVI")#
plot(NDWI_Mar)

plot(NDWI_Oct)

plot(NDVI_Mar)

plot(NDVI_Oct)

#join both datasets (Oct - Mar)
L72003 <- stack(L7Mar2003_rad_PN_mask, L5Oct2003_rad_PN_mask)
L72003 <- L72003[[c(1,2,3,4,5,8,9,10,11,12,13,15)]] #subset - only optical radiometric bands
#join with spectral indices
L72003 <- stack(L72003,NDWI_Mar,NDWI_Oct)  
L72003 <- stack(L72003,NDVI_Mar,NDVI_Oct)  

############### training data #############
#read vector files for training dataset
train_2003 <- readOGR("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/TrainAreas", "TrainAreas_2003_7cat_v2")
## OGR data source with driver: ESRI Shapefile 
## Source: "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/TrainAreas", layer: "TrainAreas_2003_7cat_v2"
## with 45 features
## It has 2 fields
## Integer64 fields read as strings:  id
val_2003 <- readOGR("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/TrainAreas", "TestAreas_2003_7cat")
## OGR data source with driver: ESRI Shapefile 
## Source: "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/TrainAreas", layer: "TestAreas_2003_7cat"
## with 47 features
## It has 2 fields
## Integer64 fields read as strings:  id
######### classification procedures
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.4.3
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
library(party)
## Warning: package 'party' was built under R version 3.4.2
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## Loading required package: strucchange
## Warning: package 'strucchange' was built under R version 3.4.2
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
## Warning: package 'sandwich' was built under R version 3.4.2
library(pls)
## Warning: package 'pls' was built under R version 3.4.2
## 
## Attaching package: 'pls'
## The following object is masked from 'package:caret':
## 
##     R2
## The following object is masked from 'package:stats':
## 
##     loadings
library(e1071)
## Warning: package 'e1071' was built under R version 3.4.2
## 
## Attaching package: 'e1071'
## The following object is masked from 'package:raster':
## 
##     interpolate
library(kernlab)
## 
## Attaching package: 'kernlab'
## The following object is masked from 'package:modeltools':
## 
##     prior
## The following object is masked from 'package:ggplot2':
## 
##     alpha
## The following objects are masked from 'package:raster':
## 
##     buffer, rotated
library(adaptDA)
## Warning: package 'adaptDA' was built under R version 3.4.2
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following objects are masked from 'package:raster':
## 
##     area, select
#ensemble of predictions
models <- c("svmPoly", "svmRadial", "svmLinear", "rf", "knn", "gbm", "pls", "mda", "amdai", "avNNet")

ensemble <- lapply (models, function(mod){
  set.seed(5)
  sc <- superClass(L72003, model= mod, trainData = train_2003, 
                   responseCol = "class")
  return(sc$map)
})
## Loading required package: gbm
## Loading required package: survival
## 
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
## 
##     cluster
## Loading required package: splines
## Loading required package: parallel
## Loaded gbm 2.1.3
## Loading required package: plyr
## 
## Attaching package: 'plyr'
## The following object is masked from 'package:modeltools':
## 
##     empty
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.8008
##      2        1.4967             nan     0.1000    0.4520
##      3        1.2351             nan     0.1000    0.3050
##      4        1.0500             nan     0.1000    0.2539
##      5        0.8983             nan     0.1000    0.1704
##      6        0.7886             nan     0.1000    0.1775
##      7        0.6864             nan     0.1000    0.1227
##      8        0.6074             nan     0.1000    0.1132
##      9        0.5347             nan     0.1000    0.0870
##     10        0.4789             nan     0.1000    0.0887
##     20        0.1654             nan     0.1000    0.0172
##     40        0.0268             nan     0.1000    0.0009
##     60        0.0065             nan     0.1000    0.0001
##     80        0.0021             nan     0.1000    0.0000
##    100        0.0010             nan     0.1000   -0.0004
##    120        0.0007             nan     0.1000    0.0003
##    140        0.0003             nan     0.1000   -0.0000
##    150        0.0003             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.8837
##      2        1.4555             nan     0.1000    0.4450
##      3        1.1804             nan     0.1000    0.3337
##      4        0.9800             nan     0.1000    0.2524
##      5        0.8052             nan     0.1000    0.2308
##      6        0.6710             nan     0.1000    0.1627
##      7        0.5703             nan     0.1000    0.1469
##      8        0.4784             nan     0.1000    0.1164
##      9        0.4041             nan     0.1000    0.0889
##     10        0.3458             nan     0.1000    0.0764
##     20        0.0774             nan     0.1000    0.0099
##     40        0.0103             nan     0.1000   -0.0004
##     60        0.0040             nan     0.1000   -0.0014
##     80        0.0021             nan     0.1000   -0.0001
##    100        0.0014             nan     0.1000   -0.0008
##    120        0.0012             nan     0.1000   -0.0000
##    140        0.0010             nan     0.1000   -0.0001
##    150        0.0013             nan     0.1000   -0.0010
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.8900
##      2        1.4025             nan     0.1000    0.4550
##      3        1.1299             nan     0.1000    0.3718
##      4        0.9067             nan     0.1000    0.2492
##      5        0.7532             nan     0.1000    0.1965
##      6        0.6273             nan     0.1000    0.1583
##      7        0.5352             nan     0.1000    0.1045
##      8        0.4615             nan     0.1000    0.1159
##      9        0.3864             nan     0.1000    0.0868
##     10        0.3307             nan     0.1000    0.0830
##     20        0.0711             nan     0.1000    0.0081
##     40        0.0068             nan     0.1000    0.0003
##     60        0.0019             nan     0.1000   -0.0001
##     80        0.0008             nan     0.1000   -0.0006
##    100        0.0006             nan     0.1000    0.0001
##    120        0.0003             nan     0.1000   -0.0001
##    140        0.0001             nan     0.1000   -0.0000
##    150        0.0001             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.6953
##      2        1.5242             nan     0.1000    0.4043
##      3        1.2696             nan     0.1000    0.3317
##      4        1.0774             nan     0.1000    0.2565
##      5        0.9269             nan     0.1000    0.2019
##      6        0.8111             nan     0.1000    0.1603
##      7        0.7165             nan     0.1000    0.1302
##      8        0.6352             nan     0.1000    0.1196
##      9        0.5609             nan     0.1000    0.0943
##     10        0.4977             nan     0.1000    0.0801
##     20        0.1735             nan     0.1000    0.0250
##     40        0.0308             nan     0.1000   -0.0020
##     60        0.0100             nan     0.1000   -0.0001
##     80        0.0046             nan     0.1000   -0.0016
##    100        0.0024             nan     0.1000   -0.0009
##    120        0.0013             nan     0.1000   -0.0001
##    140        0.0008             nan     0.1000   -0.0001
##    150        0.0007             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.9568
##      2        1.3903             nan     0.1000    0.4555
##      3        1.1048             nan     0.1000    0.2939
##      4        0.9204             nan     0.1000    0.2708
##      5        0.7607             nan     0.1000    0.1881
##      6        0.6423             nan     0.1000    0.1612
##      7        0.5354             nan     0.1000    0.1286
##      8        0.4506             nan     0.1000    0.1158
##      9        0.3779             nan     0.1000    0.0820
##     10        0.3214             nan     0.1000    0.0607
##     20        0.0795             nan     0.1000    0.0097
##     40        0.0115             nan     0.1000    0.0002
##     60        0.0026             nan     0.1000   -0.0006
##     80        0.0006             nan     0.1000   -0.0000
##    100        0.0002             nan     0.1000   -0.0001
##    120        0.0003             nan     0.1000   -0.0000
##    140        0.0004             nan     0.1000   -0.0004
##    150        0.0003             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.7579
##      2        1.4519             nan     0.1000    0.4498
##      3        1.1735             nan     0.1000    0.3532
##      4        0.9538             nan     0.1000    0.2458
##      5        0.8038             nan     0.1000    0.1953
##      6        0.6707             nan     0.1000    0.1605
##      7        0.5649             nan     0.1000    0.1198
##      8        0.4846             nan     0.1000    0.1317
##      9        0.4078             nan     0.1000    0.0903
##     10        0.3497             nan     0.1000    0.0770
##     20        0.0768             nan     0.1000    0.0081
##     40        0.0062             nan     0.1000    0.0008
##     60        0.0017             nan     0.1000   -0.0009
##     80        0.0008             nan     0.1000   -0.0001
##    100        0.0006             nan     0.1000   -0.0000
##    120        0.0007             nan     0.1000   -0.0006
##    140        0.0006             nan     0.1000   -0.0002
##    150        0.0005             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.8238
##      2        1.4896             nan     0.1000    0.4286
##      3        1.2332             nan     0.1000    0.2879
##      4        1.0628             nan     0.1000    0.2633
##      5        0.9102             nan     0.1000    0.1912
##      6        0.7943             nan     0.1000    0.1672
##      7        0.6913             nan     0.1000    0.1312
##      8        0.6104             nan     0.1000    0.1139
##      9        0.5424             nan     0.1000    0.0885
##     10        0.4871             nan     0.1000    0.0829
##     20        0.1751             nan     0.1000    0.0142
##     40        0.0288             nan     0.1000    0.0000
##     60        0.0067             nan     0.1000   -0.0011
##     80        0.0024             nan     0.1000   -0.0000
##    100        0.0009             nan     0.1000    0.0000
##    120        0.0005             nan     0.1000   -0.0000
##    140        0.0002             nan     0.1000   -0.0000
##    150        0.0001             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.9249
##      2        1.4329             nan     0.1000    0.4950
##      3        1.1456             nan     0.1000    0.3592
##      4        0.9256             nan     0.1000    0.2631
##      5        0.7785             nan     0.1000    0.1909
##      6        0.6571             nan     0.1000    0.1628
##      7        0.5530             nan     0.1000    0.1325
##      8        0.4669             nan     0.1000    0.1087
##      9        0.3943             nan     0.1000    0.0852
##     10        0.3343             nan     0.1000    0.0684
##     20        0.0685             nan     0.1000    0.0128
##     40        0.0062             nan     0.1000   -0.0006
##     60        0.0019             nan     0.1000   -0.0006
##     80        0.0010             nan     0.1000   -0.0007
##    100        0.0006             nan     0.1000   -0.0003
##    120        0.0002             nan     0.1000   -0.0000
##    140        0.0001             nan     0.1000   -0.0000
##    150        0.0000             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.7989
##      2        1.4402             nan     0.1000    0.4446
##      3        1.1742             nan     0.1000    0.3808
##      4        0.9470             nan     0.1000    0.2795
##      5        0.7777             nan     0.1000    0.1931
##      6        0.6601             nan     0.1000    0.1744
##      7        0.5556             nan     0.1000    0.1430
##      8        0.4646             nan     0.1000    0.1129
##      9        0.3932             nan     0.1000    0.1048
##     10        0.3264             nan     0.1000    0.0721
##     20        0.0758             nan     0.1000    0.0104
##     40        0.0050             nan     0.1000    0.0005
##     60        0.0008             nan     0.1000    0.0000
##     80        0.0002             nan     0.1000   -0.0001
##    100        0.0002             nan     0.1000    0.0000
##    120        0.0001             nan     0.1000   -0.0000
##    140        0.0000             nan     0.1000   -0.0000
##    150        0.0001             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.8133
##      2        1.5006             nan     0.1000    0.4677
##      3        1.2355             nan     0.1000    0.3154
##      4        1.0560             nan     0.1000    0.2590
##      5        0.9087             nan     0.1000    0.1915
##      6        0.7924             nan     0.1000    0.1567
##      7        0.6962             nan     0.1000    0.1407
##      8        0.6087             nan     0.1000    0.1116
##      9        0.5412             nan     0.1000    0.0976
##     10        0.4808             nan     0.1000    0.0714
##     20        0.1665             nan     0.1000    0.0150
##     40        0.0332             nan     0.1000    0.0007
##     60        0.0093             nan     0.1000    0.0002
##     80        0.0039             nan     0.1000   -0.0012
##    100        0.0017             nan     0.1000   -0.0001
##    120        0.0008             nan     0.1000   -0.0001
##    140        0.0006             nan     0.1000   -0.0003
##    150        0.0005             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.8665
##      2        1.4069             nan     0.1000    0.5121
##      3        1.0977             nan     0.1000    0.3410
##      4        0.8934             nan     0.1000    0.2729
##      5        0.7344             nan     0.1000    0.2023
##      6        0.6156             nan     0.1000    0.1547
##      7        0.5161             nan     0.1000    0.1428
##      8        0.4288             nan     0.1000    0.1044
##      9        0.3677             nan     0.1000    0.0892
##     10        0.3105             nan     0.1000    0.0701
##     20        0.0656             nan     0.1000    0.0105
##     40        0.0066             nan     0.1000   -0.0011
##     60        0.0028             nan     0.1000   -0.0004
##     80        0.0012             nan     0.1000   -0.0001
##    100        0.0007             nan     0.1000   -0.0001
##    120        0.0007             nan     0.1000   -0.0002
##    140        0.0004             nan     0.1000   -0.0000
##    150        0.0004             nan     0.1000    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.8833
##      2        1.3938             nan     0.1000    0.5102
##      3        1.1065             nan     0.1000    0.3347
##      4        0.8971             nan     0.1000    0.2380
##      5        0.7535             nan     0.1000    0.1903
##      6        0.6358             nan     0.1000    0.1676
##      7        0.5279             nan     0.1000    0.1322
##      8        0.4472             nan     0.1000    0.1010
##      9        0.3823             nan     0.1000    0.1016
##     10        0.3206             nan     0.1000    0.0767
##     20        0.0707             nan     0.1000    0.0124
##     40        0.0062             nan     0.1000    0.0008
##     60        0.0014             nan     0.1000   -0.0005
##     80        0.0007             nan     0.1000   -0.0002
##    100        0.0005             nan     0.1000   -0.0000
##    120        0.0004             nan     0.1000   -0.0002
##    140        0.0002             nan     0.1000   -0.0001
##    150        0.0001             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.7992
##      2        1.4927             nan     0.1000    0.4331
##      3        1.2348             nan     0.1000    0.3138
##      4        1.0491             nan     0.1000    0.2485
##      5        0.9081             nan     0.1000    0.1920
##      6        0.7951             nan     0.1000    0.1584
##      7        0.6981             nan     0.1000    0.1320
##      8        0.6185             nan     0.1000    0.1127
##      9        0.5424             nan     0.1000    0.1041
##     10        0.4806             nan     0.1000    0.0878
##     20        0.1591             nan     0.1000    0.0213
##     40        0.0244             nan     0.1000   -0.0018
##     60        0.0055             nan     0.1000   -0.0002
##     80        0.0016             nan     0.1000    0.0001
##    100        0.0006             nan     0.1000    0.0001
##    120        0.0003             nan     0.1000   -0.0000
##    140        0.0001             nan     0.1000    0.0000
##    150        0.0000             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.7560
##      2        1.4860             nan     0.1000    0.5244
##      3        1.1653             nan     0.1000    0.3250
##      4        0.9590             nan     0.1000    0.2925
##      5        0.7939             nan     0.1000    0.2118
##      6        0.6598             nan     0.1000    0.1705
##      7        0.5510             nan     0.1000    0.1332
##      8        0.4664             nan     0.1000    0.1027
##      9        0.4007             nan     0.1000    0.0908
##     10        0.3442             nan     0.1000    0.0783
##     20        0.0749             nan     0.1000    0.0114
##     40        0.0067             nan     0.1000    0.0003
##     60        0.0008             nan     0.1000    0.0000
##     80        0.0002             nan     0.1000   -0.0000
##    100        0.0001             nan     0.1000    0.0000
##    120        0.0000             nan     0.1000   -0.0000
##    140        0.0000             nan     0.1000    0.0000
##    150        0.0000             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.9053
##      2        1.4048             nan     0.1000    0.4968
##      3        1.0962             nan     0.1000    0.3094
##      4        0.9001             nan     0.1000    0.2524
##      5        0.7412             nan     0.1000    0.1850
##      6        0.6257             nan     0.1000    0.1586
##      7        0.5318             nan     0.1000    0.1210
##      8        0.4521             nan     0.1000    0.1136
##      9        0.3812             nan     0.1000    0.0738
##     10        0.3297             nan     0.1000    0.0776
##     20        0.0801             nan     0.1000    0.0124
##     40        0.0053             nan     0.1000    0.0009
##     60        0.0011             nan     0.1000    0.0000
##     80        0.0003             nan     0.1000   -0.0000
##    100        0.0001             nan     0.1000    0.0000
##    120        0.0000             nan     0.1000   -0.0000
##    140        0.0000             nan     0.1000   -0.0000
##    150        0.0000             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.9459             nan     0.1000    0.7764
##      2        1.4831             nan     0.1000    0.3972
##      3        1.2351             nan     0.1000    0.3165
##      4        1.0531             nan     0.1000    0.2502
##      5        0.9042             nan     0.1000    0.1969
##      6        0.7898             nan     0.1000    0.1691
##      7        0.6892             nan     0.1000    0.1206
##      8        0.6132             nan     0.1000    0.0955
##      9        0.5493             nan     0.1000    0.0839
##     10        0.4921             nan     0.1000    0.0913
##     20        0.1698             nan     0.1000    0.0226
##     40        0.0326             nan     0.1000    0.0037
##     50        0.0172             nan     0.1000   -0.0011
## Loading required package: mda
## Loading required package: class
## Loaded mda 0.4-9
## Loading required package: nnet
## Warning: executing %dopar% sequentially: no parallel backend registered
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 315.429594 
## final  value 167.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 307.849874 
## final  value 167.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 271.272372 
## final  value 166.999096 
## converged
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 268.704972 
## iter  10 value 166.878519
## iter  20 value 159.569846
## final  value 154.329308 
## converged
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 351.973158 
## final  value 167.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 257.208222 
## iter  10 value 154.329335
## iter  10 value 154.329335
## iter  10 value 154.329335
## final  value 154.329335 
## converged
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 296.816724 
## final  value 167.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 314.848229 
## iter  10 value 151.359246
## final  value 151.161677 
## converged
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 292.084638 
## final  value 167.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 407.179091 
## final  value 167.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 292.893853 
## iter  10 value 154.329341
## iter  10 value 154.329341
## iter  10 value 154.329341
## final  value 154.329341 
## converged
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 407.314062 
## final  value 167.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 360.894975 
## final  value 167.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 334.206361 
## final  value 167.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 376.560152 
## final  value 154.329342 
## converged
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 321.894382 
## iter  10 value 144.963833
## iter  20 value 140.834156
## iter  30 value 136.662344
## iter  40 value 119.283285
## iter  50 value 109.188227
## iter  60 value 106.857399
## iter  70 value 106.805098
## iter  80 value 106.798890
## final  value 106.798878 
## converged
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 281.198932 
## iter  10 value 149.515444
## iter  20 value 140.527039
## iter  30 value 135.960722
## iter  40 value 120.012088
## iter  50 value 115.806153
## iter  60 value 113.475309
## iter  70 value 113.168209
## iter  80 value 113.128262
## iter  80 value 113.128261
## iter  80 value 113.128261
## final  value 113.128261 
## converged
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 262.292878 
## iter  10 value 140.972624
## iter  20 value 140.531770
## iter  30 value 136.838155
## iter  40 value 127.243019
## iter  50 value 123.270109
## iter  60 value 120.893964
## iter  70 value 116.881820
## iter  80 value 114.426201
## iter  90 value 111.807360
## iter 100 value 111.685315
## final  value 111.685315 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 271.663345 
## iter  10 value 147.003514
## iter  20 value 139.743942
## iter  30 value 139.341690
## iter  40 value 139.321189
## final  value 139.320468 
## converged
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 318.633934 
## iter  10 value 152.212453
## iter  20 value 138.219066
## iter  30 value 122.753846
## iter  40 value 122.020699
## iter  50 value 120.740199
## iter  60 value 118.900900
## iter  70 value 116.112549
## iter  80 value 111.779147
## iter  90 value 111.568409
## final  value 111.568155 
## converged
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 299.879056 
## iter  10 value 151.348363
## iter  20 value 139.928274
## iter  30 value 134.355468
## iter  40 value 112.976520
## iter  50 value 86.913142
## iter  60 value 78.688375
## iter  70 value 71.844112
## iter  80 value 71.278277
## iter  90 value 70.794976
## iter 100 value 70.761142
## final  value 70.761142 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 312.871271 
## iter  10 value 149.466855
## iter  20 value 126.656396
## iter  30 value 117.351445
## iter  40 value 111.912886
## iter  50 value 111.383193
## iter  60 value 92.824952
## iter  70 value 82.114817
## iter  80 value 75.246281
## iter  90 value 73.986763
## iter 100 value 71.337349
## final  value 71.337349 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 249.523901 
## iter  10 value 142.169479
## iter  20 value 140.375306
## iter  30 value 138.686145
## iter  40 value 120.504522
## iter  50 value 91.282502
## iter  60 value 87.558072
## iter  70 value 86.377297
## iter  80 value 82.728647
## iter  90 value 78.460520
## iter 100 value 59.715674
## final  value 59.715674 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 381.337820 
## iter  10 value 155.126820
## iter  20 value 141.444508
## iter  30 value 127.840301
## iter  40 value 104.401538
## iter  50 value 100.118377
## iter  60 value 97.224790
## iter  70 value 86.993932
## iter  80 value 50.700135
## iter  90 value 44.901006
## iter 100 value 44.116500
## final  value 44.116500 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 298.482346 
## iter  10 value 154.616604
## iter  20 value 139.211749
## iter  30 value 122.789545
## iter  40 value 98.487477
## iter  50 value 72.682075
## iter  60 value 64.389152
## iter  70 value 61.940499
## iter  80 value 58.311558
## iter  90 value 54.353750
## iter 100 value 43.432173
## final  value 43.432173 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 338.068473 
## iter  10 value 165.748491
## iter  20 value 142.362147
## iter  30 value 132.357087
## iter  40 value 105.903215
## iter  50 value 78.580836
## iter  60 value 71.640070
## iter  70 value 62.681100
## iter  80 value 51.082549
## iter  90 value 42.189832
## iter 100 value 39.657668
## final  value 39.657668 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 318.239377 
## iter  10 value 150.619134
## iter  20 value 139.308369
## iter  30 value 126.781615
## iter  40 value 122.888854
## iter  50 value 119.684130
## iter  60 value 102.787900
## iter  70 value 95.700293
## iter  80 value 86.192328
## iter  90 value 61.952380
## iter 100 value 42.577610
## final  value 42.577610 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 299.734434 
## iter  10 value 164.245473
## iter  20 value 141.803560
## iter  30 value 121.311474
## iter  40 value 113.104519
## iter  50 value 110.852521
## iter  60 value 102.093944
## iter  70 value 79.684353
## iter  80 value 69.906847
## iter  90 value 47.882626
## iter 100 value 33.690784
## final  value 33.690784 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 409.920091 
## iter  10 value 148.535082
## iter  20 value 138.918289
## iter  30 value 133.356413
## iter  40 value 121.881576
## iter  50 value 92.883667
## iter  60 value 75.681498
## iter  70 value 56.821903
## iter  80 value 45.906039
## iter  90 value 38.650535
## iter 100 value 32.254808
## final  value 32.254808 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 369.805259 
## iter  10 value 150.672992
## iter  20 value 121.405654
## iter  30 value 114.591903
## iter  40 value 89.655622
## iter  50 value 77.258212
## iter  60 value 64.065507
## iter  70 value 60.248136
## iter  80 value 55.217273
## iter  90 value 49.175846
## iter 100 value 35.763748
## final  value 35.763748 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 290.066226 
## iter  10 value 167.345890
## iter  20 value 167.325020
## iter  30 value 167.287434
## iter  40 value 167.179510
## iter  50 value 154.605284
## iter  60 value 146.898088
## iter  70 value 146.143082
## iter  80 value 143.183826
## iter  90 value 138.323675
## iter 100 value 138.228429
## final  value 138.228429 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 352.741561 
## iter  10 value 167.464259
## iter  20 value 160.065355
## iter  30 value 147.711321
## iter  40 value 144.514987
## iter  50 value 142.373276
## iter  60 value 139.056048
## iter  70 value 138.992189
## iter  80 value 138.246422
## iter  90 value 138.175901
## final  value 137.990847 
## converged
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 341.847092 
## iter  10 value 142.903544
## iter  20 value 138.008454
## iter  30 value 137.995628
## iter  40 value 133.305885
## iter  50 value 121.483868
## iter  60 value 121.326225
## iter  70 value 121.314867
## iter  80 value 121.307854
## iter  90 value 121.295521
## iter 100 value 121.288453
## final  value 121.288453 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 351.985205 
## iter  10 value 164.068791
## iter  20 value 155.035078
## iter  30 value 154.186621
## iter  40 value 148.982963
## iter  50 value 141.642739
## iter  60 value 138.312784
## iter  70 value 138.235982
## iter  80 value 138.052543
## final  value 137.989905 
## converged
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 327.611367 
## iter  10 value 166.846618
## iter  20 value 161.693733
## iter  30 value 161.545644
## iter  40 value 158.714003
## iter  50 value 146.824693
## iter  60 value 144.180875
## iter  70 value 143.472454
## iter  80 value 141.478581
## iter  90 value 141.463077
## iter 100 value 141.385576
## final  value 141.385576 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 256.409767 
## iter  10 value 167.070964
## iter  20 value 160.323033
## iter  30 value 145.183891
## iter  40 value 138.066369
## iter  50 value 137.153793
## iter  60 value 137.091671
## iter  70 value 137.086033
## iter  80 value 137.080521
## iter  90 value 137.078149
## iter 100 value 137.074422
## final  value 137.074422 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 323.663415 
## iter  10 value 155.989366
## iter  20 value 139.528429
## iter  30 value 133.184350
## iter  40 value 113.511498
## iter  50 value 106.943288
## iter  60 value 104.391163
## iter  70 value 91.521808
## iter  80 value 88.553394
## iter  90 value 88.278991
## iter 100 value 88.266176
## final  value 88.266176 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 290.759971 
## iter  10 value 154.974534
## iter  20 value 151.810771
## iter  30 value 149.722223
## iter  40 value 148.557551
## iter  50 value 147.553545
## iter  60 value 145.914931
## iter  70 value 145.344884
## iter  80 value 140.542617
## iter  90 value 140.500724
## iter 100 value 140.360236
## final  value 140.360236 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 309.739003 
## iter  10 value 167.090566
## iter  20 value 167.044057
## iter  30 value 167.011605
## iter  40 value 166.886887
## iter  50 value 161.668907
## iter  60 value 160.272282
## iter  70 value 159.514819
## iter  80 value 158.879595
## iter  90 value 146.846387
## iter 100 value 146.768885
## final  value 146.768885 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 334.807201 
## iter  10 value 167.118676
## iter  20 value 167.109319
## iter  30 value 167.083645
## iter  40 value 166.664489
## iter  50 value 154.458574
## iter  60 value 154.344142
## iter  70 value 154.331980
## iter  80 value 154.289586
## iter  90 value 151.169508
## iter 100 value 149.162045
## final  value 149.162045 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 439.605592 
## iter  10 value 155.365057
## iter  20 value 127.656696
## iter  30 value 126.632678
## iter  40 value 126.425351
## iter  50 value 125.948123
## iter  60 value 121.853791
## iter  70 value 105.745062
## iter  80 value 101.181974
## iter  90 value 98.722030
## iter 100 value 98.533482
## final  value 98.533482 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 344.005485 
## iter  10 value 170.743956
## iter  20 value 166.294371
## iter  30 value 165.144526
## iter  40 value 164.541045
## iter  50 value 156.488078
## iter  60 value 146.127959
## iter  70 value 145.629970
## iter  80 value 144.297373
## iter  90 value 144.193459
## iter 100 value 144.049526
## final  value 144.049526 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 412.011740 
## iter  10 value 167.089537
## iter  20 value 165.191305
## iter  30 value 151.209893
## iter  40 value 132.559990
## iter  50 value 125.735861
## iter  60 value 125.667515
## iter  70 value 125.592682
## iter  80 value 125.516433
## iter  90 value 125.358687
## iter 100 value 125.251607
## final  value 125.251607 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 235.563993 
## iter  10 value 166.849294
## iter  20 value 163.615875
## iter  30 value 163.552503
## iter  40 value 158.167200
## iter  50 value 145.540646
## iter  60 value 143.589226
## iter  70 value 113.157433
## iter  80 value 112.669936
## iter  90 value 112.580140
## iter 100 value 110.193562
## final  value 110.193562 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 329.663584 
## iter  10 value 167.079403
## iter  20 value 167.074313
## iter  30 value 167.063124
## iter  40 value 166.996000
## iter  50 value 162.990819
## iter  60 value 148.159787
## iter  70 value 134.252064
## iter  80 value 133.593836
## iter  90 value 110.580443
## iter 100 value 110.330582
## final  value 110.330582 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 331.560090 
## iter  10 value 165.846420
## iter  20 value 154.091841
## final  value 153.253024 
## converged
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 249.519751 
## iter  10 value 152.811582
## iter  20 value 148.186752
## final  value 148.186747 
## converged
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 231.101766 
## final  value 165.999267 
## converged
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 306.797755 
## iter  10 value 165.946180
## iter  20 value 165.889675
## iter  30 value 164.587520
## final  value 162.530120 
## converged
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 266.581335 
## final  value 166.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 241.759506 
## final  value 166.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 272.737840 
## final  value 166.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 403.909129 
## final  value 166.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 330.438104 
## final  value 166.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 263.617480 
## final  value 165.999506 
## converged
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 370.233980 
## final  value 166.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 369.160160 
## final  value 162.530120 
## converged
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 315.472898 
## final  value 166.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 323.499485 
## final  value 166.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 219.783337 
## iter  10 value 153.253034
## final  value 153.253014 
## converged
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 253.879203 
## iter  10 value 150.195661
## iter  20 value 139.569381
## iter  30 value 139.218667
## iter  40 value 134.150592
## iter  50 value 130.119540
## iter  60 value 120.881852
## iter  70 value 119.987699
## iter  80 value 118.507391
## iter  90 value 113.347192
## iter 100 value 112.049664
## final  value 112.049664 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 273.003891 
## iter  10 value 140.337904
## iter  20 value 136.710881
## iter  30 value 123.514604
## iter  40 value 112.989012
## iter  50 value 108.155414
## iter  60 value 105.886775
## iter  70 value 105.861022
## final  value 105.860955 
## converged
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 328.561435 
## iter  10 value 141.748765
## iter  20 value 133.744902
## iter  30 value 114.804125
## iter  40 value 111.907821
## iter  50 value 111.019199
## iter  60 value 109.968557
## iter  70 value 109.895828
## final  value 109.895821 
## converged
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 349.213703 
## iter  10 value 149.406965
## iter  20 value 139.831041
## iter  30 value 138.839240
## iter  40 value 115.485078
## iter  50 value 108.361256
## iter  60 value 106.024593
## iter  70 value 105.866109
## final  value 105.860955 
## converged
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 283.453853 
## iter  10 value 139.021814
## iter  20 value 138.318098
## final  value 138.317974 
## converged
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 266.785585 
## iter  10 value 141.379895
## iter  20 value 121.129203
## iter  30 value 118.262891
## iter  40 value 117.492588
## iter  50 value 113.318801
## iter  60 value 89.266944
## iter  70 value 87.031619
## iter  80 value 86.052463
## iter  90 value 85.283044
## iter 100 value 81.800817
## final  value 81.800817 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 250.410167 
## iter  10 value 147.140502
## iter  20 value 130.274966
## iter  30 value 122.165215
## iter  40 value 119.499630
## iter  50 value 105.663466
## iter  60 value 96.346032
## iter  70 value 93.813754
## iter  80 value 91.813139
## iter  90 value 87.975862
## iter 100 value 72.449122
## final  value 72.449122 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 303.136780 
## iter  10 value 142.110145
## iter  20 value 138.125452
## iter  30 value 117.531563
## iter  40 value 111.925035
## iter  50 value 104.762688
## iter  60 value 83.507383
## iter  70 value 73.241056
## iter  80 value 72.745574
## iter  90 value 72.489371
## iter 100 value 72.013879
## final  value 72.013879 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 308.845301 
## iter  10 value 164.626717
## iter  20 value 125.663623
## iter  30 value 117.682521
## iter  40 value 113.547604
## iter  50 value 86.836989
## iter  60 value 64.697881
## iter  70 value 58.782128
## iter  80 value 49.759231
## iter  90 value 41.710309
## iter 100 value 41.431648
## final  value 41.431648 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 421.121831 
## iter  10 value 157.695304
## iter  20 value 139.574478
## iter  30 value 131.430081
## iter  40 value 109.755866
## iter  50 value 93.595304
## iter  60 value 86.242377
## iter  70 value 75.390645
## iter  80 value 73.919226
## iter  90 value 71.984508
## iter 100 value 69.931308
## final  value 69.931308 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 325.007625 
## iter  10 value 154.331174
## iter  20 value 141.032468
## iter  30 value 135.491774
## iter  40 value 118.092123
## iter  50 value 87.390752
## iter  60 value 77.093532
## iter  70 value 73.070870
## iter  80 value 49.593657
## iter  90 value 41.577925
## iter 100 value 36.561998
## final  value 36.561998 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 358.467101 
## iter  10 value 162.975186
## iter  20 value 135.619092
## iter  30 value 127.809678
## iter  40 value 116.317317
## iter  50 value 88.893168
## iter  60 value 71.900116
## iter  70 value 57.579908
## iter  80 value 49.009762
## iter  90 value 37.165981
## iter 100 value 33.385220
## final  value 33.385220 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 296.953263 
## iter  10 value 141.333706
## iter  20 value 122.353798
## iter  30 value 117.785534
## iter  40 value 114.890483
## iter  50 value 91.051905
## iter  60 value 86.181018
## iter  70 value 74.436614
## iter  80 value 68.939500
## iter  90 value 53.880674
## iter 100 value 50.087841
## final  value 50.087841 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 259.182639 
## iter  10 value 141.859497
## iter  20 value 138.140489
## iter  30 value 118.809271
## iter  40 value 106.907637
## iter  50 value 84.339915
## iter  60 value 63.831345
## iter  70 value 60.642784
## iter  80 value 48.616191
## iter  90 value 37.363695
## iter 100 value 34.632097
## final  value 34.632097 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 272.635432 
## iter  10 value 165.192151
## iter  20 value 135.276882
## iter  30 value 101.997328
## iter  40 value 89.054997
## iter  50 value 71.737219
## iter  60 value 61.711971
## iter  70 value 53.789163
## iter  80 value 44.072885
## iter  90 value 32.488616
## iter 100 value 29.722425
## final  value 29.722425 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 222.181259 
## iter  10 value 165.996179
## iter  20 value 161.376403
## iter  30 value 160.784162
## iter  40 value 158.842478
## iter  50 value 157.079047
## iter  60 value 155.689467
## iter  70 value 155.525658
## iter  80 value 146.082294
## iter  90 value 145.951618
## iter 100 value 143.842600
## final  value 143.842600 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 304.879970 
## iter  10 value 165.792997
## iter  20 value 153.360911
## iter  30 value 150.040733
## iter  40 value 149.897318
## iter  50 value 142.434093
## iter  60 value 140.334750
## iter  70 value 137.691839
## iter  80 value 137.194283
## iter  90 value 137.084510
## iter 100 value 136.970744
## final  value 136.970744 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 272.958096 
## iter  10 value 154.813824
## iter  20 value 151.162466
## iter  30 value 151.048735
## iter  40 value 150.905497
## iter  50 value 150.474102
## iter  60 value 144.714583
## iter  70 value 143.624201
## iter  80 value 143.593666
## iter  90 value 137.806051
## iter 100 value 136.965365
## final  value 136.965365 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 371.440524 
## iter  10 value 166.070149
## iter  20 value 148.248539
## iter  30 value 145.703847
## iter  40 value 144.296839
## iter  50 value 139.524543
## iter  60 value 137.308613
## iter  70 value 137.244098
## iter  80 value 137.224316
## iter  90 value 137.148594
## iter 100 value 137.020615
## final  value 137.020615 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 299.305773 
## iter  10 value 166.070592
## iter  20 value 166.068184
## iter  30 value 166.065099
## iter  40 value 166.060872
## iter  50 value 166.054427
## iter  60 value 166.042550
## iter  70 value 166.008665
## iter  80 value 164.430469
## iter  90 value 162.289794
## iter 100 value 150.134932
## final  value 150.134932 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 309.720924 
## iter  10 value 164.772330
## iter  20 value 162.349716
## iter  30 value 137.080294
## iter  40 value 136.969265
## iter  50 value 136.966193
## final  value 136.965766 
## converged
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 260.853733 
## iter  10 value 166.402485
## iter  20 value 166.268692
## iter  30 value 153.715421
## iter  40 value 153.210014
## iter  50 value 148.666970
## iter  60 value 148.245479
## iter  70 value 146.183885
## iter  80 value 146.001286
## iter  90 value 135.348050
## iter 100 value 132.773308
## final  value 132.773308 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 249.298763 
## iter  10 value 165.550793
## iter  20 value 158.820876
## iter  30 value 156.628826
## iter  40 value 153.735202
## iter  50 value 153.144599
## iter  60 value 140.328479
## iter  70 value 124.862350
## iter  80 value 116.216485
## iter  90 value 115.789104
## iter 100 value 112.646706
## final  value 112.646706 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 332.840922 
## iter  10 value 168.828074
## iter  20 value 168.426959
## iter  30 value 165.232443
## iter  40 value 137.030389
## final  value 136.967066 
## converged
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 331.119935 
## iter  10 value 172.033381
## iter  20 value 160.393587
## iter  30 value 150.997230
## iter  40 value 142.193534
## iter  50 value 139.880627
## iter  60 value 129.682133
## iter  70 value 128.768935
## iter  80 value 127.629443
## iter  90 value 123.919297
## iter 100 value 121.718763
## final  value 121.718763 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 316.013227 
## iter  10 value 166.093980
## iter  20 value 150.601707
## iter  30 value 125.971922
## iter  40 value 107.520791
## iter  50 value 106.581986
## iter  60 value 106.523946
## iter  70 value 106.370277
## iter  80 value 106.184056
## iter  90 value 105.895790
## iter 100 value 105.378738
## final  value 105.378738 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 395.525356 
## iter  10 value 166.248350
## iter  20 value 166.205762
## iter  30 value 154.178467
## iter  40 value 153.425169
## iter  50 value 148.399850
## iter  60 value 132.777131
## iter  70 value 131.804626
## iter  80 value 124.993221
## iter  90 value 118.902543
## iter 100 value 118.181429
## final  value 118.181429 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 333.542311 
## iter  10 value 154.416653
## iter  20 value 152.216018
## iter  30 value 148.240110
## iter  40 value 136.342856
## iter  50 value 132.552404
## iter  60 value 130.101460
## iter  70 value 128.440516
## iter  80 value 128.387960
## iter  90 value 126.631999
## iter 100 value 126.598803
## final  value 126.598803 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 347.792288 
## iter  10 value 166.143753
## iter  20 value 166.129133
## iter  30 value 166.066893
## iter  40 value 153.513892
## iter  50 value 152.554630
## iter  60 value 134.588320
## iter  70 value 131.351537
## iter  80 value 130.925015
## iter  90 value 130.480784
## iter 100 value 130.443232
## final  value 130.443232 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 375.389847 
## iter  10 value 166.200158
## iter  20 value 136.979532
## iter  30 value 136.973636
## iter  40 value 136.962324
## iter  50 value 118.953969
## iter  60 value 115.360303
## iter  70 value 85.619363
## iter  80 value 61.233421
## iter  90 value 58.104631
## iter 100 value 54.474059
## final  value 54.474059 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 280.379762 
## iter  10 value 152.727289
## final  value 152.727160 
## converged
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 299.702975 
## final  value 164.999965 
## converged
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 343.737248 
## final  value 165.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 338.254274 
## final  value 165.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 340.151964 
## final  value 165.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 383.502187 
## final  value 165.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 308.749966 
## final  value 165.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 274.573386 
## final  value 164.999874 
## converged
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 334.880562 
## iter  10 value 152.782764
## iter  20 value 152.706167
## iter  30 value 152.690095
## iter  40 value 152.606445
## iter  50 value 147.272733
## final  value 147.272727 
## converged
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 319.204201 
## final  value 165.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 351.706710 
## iter  10 value 156.337423
## iter  20 value 156.332940
## iter  30 value 156.221811
## final  value 153.133333 
## converged
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 400.003533 
## final  value 165.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 332.602943 
## iter  10 value 161.793996
## final  value 161.793946 
## converged
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 307.437533 
## final  value 165.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 324.239530 
## final  value 165.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 278.287284 
## iter  10 value 167.119109
## iter  20 value 139.388754
## iter  30 value 138.818633
## iter  40 value 137.669535
## iter  50 value 137.606245
## iter  60 value 137.605949
## iter  70 value 134.584355
## iter  80 value 121.667800
## iter  90 value 120.616703
## iter 100 value 118.927077
## final  value 118.927077 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 280.410152 
## iter  10 value 149.739142
## iter  20 value 137.811139
## iter  30 value 137.606121
## final  value 137.606102 
## converged
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 316.860312 
## iter  10 value 140.105170
## iter  20 value 138.958658
## iter  30 value 138.843394
## iter  40 value 128.856732
## iter  50 value 112.111391
## iter  60 value 109.880728
## iter  70 value 106.647035
## iter  80 value 106.390222
## iter  90 value 106.121105
## iter 100 value 105.707409
## final  value 105.707409 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 309.298900 
## iter  10 value 152.240007
## iter  20 value 137.606740
## iter  30 value 137.606128
## final  value 137.606113 
## converged
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 238.057420 
## iter  10 value 157.781808
## iter  20 value 114.939457
## iter  30 value 110.588850
## iter  40 value 106.873139
## iter  50 value 105.828012
## iter  60 value 105.705807
## final  value 105.705722 
## converged
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 370.482145 
## iter  10 value 142.108912
## iter  20 value 138.715882
## iter  30 value 135.868449
## iter  40 value 127.697104
## iter  50 value 93.230372
## iter  60 value 74.876362
## iter  70 value 69.334938
## iter  80 value 68.406010
## iter  90 value 67.427925
## iter 100 value 65.358414
## final  value 65.358414 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 309.187298 
## iter  10 value 138.503638
## iter  20 value 120.353978
## iter  30 value 116.698538
## iter  40 value 90.046376
## iter  50 value 78.113965
## iter  60 value 70.185095
## iter  70 value 66.427265
## iter  80 value 65.392776
## iter  90 value 64.476195
## iter 100 value 64.408534
## final  value 64.408534 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 311.373092 
## iter  10 value 149.804462
## iter  20 value 138.765886
## iter  30 value 124.071281
## iter  40 value 119.145873
## iter  50 value 117.395122
## iter  60 value 110.517426
## iter  70 value 99.651808
## iter  80 value 85.628179
## iter  90 value 60.222881
## iter 100 value 56.615142
## final  value 56.615142 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 291.342141 
## iter  10 value 156.973433
## iter  20 value 137.959056
## iter  30 value 137.171648
## iter  40 value 135.616034
## iter  50 value 120.459112
## iter  60 value 100.181982
## iter  70 value 84.974893
## iter  80 value 73.192212
## iter  90 value 69.966813
## iter 100 value 68.409783
## final  value 68.409783 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 375.620734 
## iter  10 value 145.382327
## iter  20 value 136.968755
## iter  30 value 120.820855
## iter  40 value 103.869761
## iter  50 value 97.412168
## iter  60 value 92.051115
## iter  70 value 85.385633
## iter  80 value 73.212094
## iter  90 value 68.025581
## iter 100 value 66.593244
## final  value 66.593244 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 368.724648 
## iter  10 value 147.676235
## iter  20 value 142.207652
## iter  30 value 121.306081
## iter  40 value 94.692988
## iter  50 value 87.577081
## iter  60 value 86.299254
## iter  70 value 80.188247
## iter  80 value 68.114148
## iter  90 value 59.504455
## iter 100 value 52.923571
## final  value 52.923571 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 336.951331 
## iter  10 value 146.113737
## iter  20 value 138.945804
## iter  30 value 125.415250
## iter  40 value 89.600477
## iter  50 value 63.068919
## iter  60 value 56.059186
## iter  70 value 39.205690
## iter  80 value 32.397413
## iter  90 value 30.308082
## iter 100 value 30.085368
## final  value 30.085368 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 286.569435 
## iter  10 value 148.490699
## iter  20 value 127.418854
## iter  30 value 122.427953
## iter  40 value 101.064907
## iter  50 value 90.900756
## iter  60 value 81.641970
## iter  70 value 60.613146
## iter  80 value 53.850254
## iter  90 value 51.634328
## iter 100 value 50.274929
## final  value 50.274929 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 277.681964 
## iter  10 value 170.682859
## iter  20 value 139.142924
## iter  30 value 126.983600
## iter  40 value 119.096675
## iter  50 value 114.549311
## iter  60 value 82.446705
## iter  70 value 73.268889
## iter  80 value 68.911263
## iter  90 value 67.879615
## iter 100 value 61.693839
## final  value 61.693839 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 426.233509 
## iter  10 value 140.997456
## iter  20 value 122.120153
## iter  30 value 104.307946
## iter  40 value 90.504150
## iter  50 value 69.983224
## iter  60 value 62.533611
## iter  70 value 60.784635
## iter  80 value 57.447286
## iter  90 value 56.137033
## iter 100 value 47.468159
## final  value 47.468159 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 282.764027 
## iter  10 value 164.964817
## iter  20 value 150.794148
## iter  30 value 145.443003
## iter  40 value 145.247118
## iter  50 value 142.150067
## iter  60 value 141.519743
## iter  70 value 139.929865
## iter  80 value 136.694289
## iter  90 value 136.643318
## iter 100 value 136.613554
## final  value 136.613554 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 312.880868 
## iter  10 value 165.634653
## iter  20 value 165.626099
## iter  30 value 165.613546
## iter  40 value 165.590647
## iter  50 value 165.523166
## iter  60 value 160.007233
## iter  70 value 153.340266
## iter  80 value 147.591087
## iter  90 value 146.683279
## iter 100 value 144.191422
## final  value 144.191422 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 300.143812 
## iter  10 value 165.172570
## iter  20 value 165.133456
## iter  30 value 164.858446
## iter  40 value 159.680120
## iter  50 value 143.035142
## iter  60 value 124.978929
## iter  70 value 120.400957
## iter  80 value 113.301426
## iter  90 value 112.817702
## iter 100 value 108.053309
## final  value 108.053309 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 296.995734 
## iter  10 value 165.202557
## iter  20 value 165.192971
## iter  30 value 165.175923
## iter  40 value 165.132973
## iter  50 value 164.759282
## iter  60 value 152.937193
## iter  70 value 147.243172
## iter  80 value 147.171114
## iter  90 value 142.146160
## iter 100 value 141.627422
## final  value 141.627422 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 287.761511 
## iter  10 value 165.846379
## iter  20 value 165.842063
## iter  30 value 165.837598
## iter  40 value 165.832932
## iter  50 value 165.827987
## iter  60 value 165.822644
## iter  70 value 165.816707
## iter  80 value 165.809831
## iter  90 value 165.801339
## iter 100 value 165.789714
## final  value 165.789714 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 339.373550 
## iter  10 value 159.797931
## iter  20 value 145.521308
## iter  30 value 139.600797
## iter  40 value 136.930624
## iter  50 value 119.193695
## iter  60 value 118.682652
## iter  70 value 118.615469
## iter  80 value 118.515637
## iter  90 value 113.707377
## iter 100 value 113.546409
## final  value 113.546409 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 310.536205 
## iter  10 value 167.349972
## iter  20 value 167.156055
## iter  30 value 160.572726
## iter  40 value 159.349298
## iter  50 value 159.223845
## iter  60 value 156.680293
## iter  70 value 145.205487
## iter  80 value 144.642422
## iter  90 value 144.637791
## iter 100 value 144.301855
## final  value 144.301855 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 326.368579 
## iter  10 value 170.751980
## iter  20 value 151.947959
## iter  30 value 139.573007
## iter  40 value 136.553559
## iter  50 value 136.542285
## iter  60 value 136.534350
## iter  70 value 136.327780
## iter  80 value 136.271495
## iter  90 value 136.250180
## iter 100 value 113.384605
## final  value 113.384605 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 314.920449 
## iter  10 value 165.028179
## iter  20 value 160.916385
## iter  30 value 136.831518
## iter  40 value 135.318278
## iter  50 value 120.138761
## iter  60 value 120.112875
## iter  70 value 120.078663
## iter  80 value 120.077359
## iter  90 value 120.075842
## iter 100 value 120.073977
## final  value 120.073977 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 285.928478 
## iter  10 value 163.346409
## iter  20 value 163.046751
## iter  30 value 160.759161
## iter  40 value 160.681448
## iter  50 value 150.622102
## iter  60 value 148.415015
## iter  70 value 145.036201
## iter  80 value 138.036090
## iter  90 value 136.529690
## iter 100 value 136.491953
## final  value 136.491953 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 416.471328 
## iter  10 value 165.195953
## iter  20 value 165.057402
## iter  30 value 165.040703
## iter  40 value 161.881443
## iter  50 value 155.445716
## iter  60 value 149.587464
## iter  70 value 148.710628
## iter  80 value 141.981700
## iter  90 value 138.817597
## iter 100 value 136.495885
## final  value 136.495885 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 240.774947 
## iter  10 value 165.185490
## iter  20 value 153.198360
## iter  30 value 152.657019
## iter  40 value 135.742313
## iter  50 value 122.878590
## iter  60 value 117.185835
## iter  70 value 112.954806
## iter  80 value 112.619310
## iter  90 value 110.812922
## iter 100 value 105.961901
## final  value 105.961901 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 328.468517 
## iter  10 value 153.974124
## iter  20 value 152.915262
## iter  30 value 147.695195
## iter  40 value 147.630754
## iter  50 value 147.428713
## iter  60 value 144.447927
## iter  70 value 143.513428
## iter  80 value 140.255452
## iter  90 value 136.562405
## iter 100 value 136.458565
## final  value 136.458565 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 351.482318 
## iter  10 value 164.761575
## iter  20 value 152.654166
## iter  30 value 152.336714
## iter  40 value 150.620935
## iter  50 value 149.129978
## iter  60 value 147.416228
## iter  70 value 141.979548
## iter  80 value 139.009060
## iter  90 value 138.785942
## iter 100 value 138.716394
## final  value 138.716394 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 312.741420 
## iter  10 value 165.136036
## iter  20 value 143.089405
## iter  30 value 136.480124
## iter  40 value 136.071825
## iter  50 value 119.459326
## iter  60 value 116.213569
## iter  70 value 114.574356
## iter  80 value 114.164132
## iter  90 value 114.119676
## iter 100 value 113.977756
## final  value 113.977756 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 349.961919 
## final  value 166.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 346.709643 
## final  value 166.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 348.488582 
## final  value 166.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 298.838584 
## final  value 166.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 311.423642 
## final  value 166.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 347.249343 
## final  value 166.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 352.803100 
## final  value 160.578313 
## converged
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 309.690843 
## final  value 166.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 317.220550 
## final  value 166.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 334.540739 
## final  value 166.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 253.335366 
## final  value 160.578313 
## converged
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 322.368192 
## iter  10 value 162.530346
## final  value 162.530120 
## converged
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 243.386574 
## iter  10 value 162.530259
## final  value 162.530123 
## converged
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 301.009858 
## final  value 166.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 303.686517 
## final  value 165.999962 
## converged
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 284.720419 
## iter  10 value 145.346285
## iter  20 value 139.886517
## iter  30 value 134.986341
## iter  40 value 130.464706
## iter  50 value 127.286020
## iter  60 value 120.864034
## iter  70 value 117.693324
## iter  80 value 114.317198
## iter  90 value 113.692872
## final  value 113.692369 
## converged
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 264.330489 
## iter  10 value 141.985852
## iter  20 value 133.444481
## iter  30 value 122.273650
## iter  40 value 120.601501
## iter  50 value 119.650717
## iter  60 value 117.420959
## iter  70 value 114.810019
## iter  80 value 113.380029
## iter  90 value 113.312742
## final  value 113.297373 
## converged
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 294.938748 
## iter  10 value 149.929411
## iter  20 value 138.653033
## final  value 138.631207 
## converged
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 287.727823 
## iter  10 value 168.467317
## iter  20 value 138.635989
## final  value 138.631208 
## converged
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 368.967547 
## iter  10 value 159.181611
## iter  20 value 139.874704
## iter  30 value 133.736304
## iter  40 value 121.106453
## iter  50 value 117.018669
## iter  60 value 113.971690
## iter  70 value 113.298675
## final  value 113.297373 
## converged
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 270.729892 
## iter  10 value 146.901521
## iter  20 value 114.537360
## iter  30 value 108.773629
## iter  40 value 102.549688
## iter  50 value 93.411500
## iter  60 value 89.083148
## iter  70 value 85.696243
## iter  80 value 78.196625
## iter  90 value 68.922581
## iter 100 value 66.250215
## final  value 66.250215 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 349.151894 
## iter  10 value 166.013694
## iter  20 value 141.464997
## iter  30 value 127.047955
## iter  40 value 119.836098
## iter  50 value 118.872453
## iter  60 value 117.811303
## iter  70 value 108.586959
## iter  80 value 75.502811
## iter  90 value 50.566202
## iter 100 value 46.490595
## final  value 46.490595 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 339.138546 
## iter  10 value 171.611849
## iter  20 value 144.181828
## iter  30 value 128.454864
## iter  40 value 122.426564
## iter  50 value 96.335477
## iter  60 value 89.176086
## iter  70 value 81.909877
## iter  80 value 76.541007
## iter  90 value 67.228919
## iter 100 value 56.387247
## final  value 56.387247 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 319.852564 
## iter  10 value 171.491490
## iter  20 value 138.645816
## iter  30 value 117.644214
## iter  40 value 107.184494
## iter  50 value 105.510016
## iter  60 value 105.250826
## iter  70 value 103.860632
## iter  80 value 92.099059
## iter  90 value 73.248515
## iter 100 value 60.955630
## final  value 60.955630 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 307.300897 
## iter  10 value 156.199230
## iter  20 value 138.158942
## iter  30 value 128.744755
## iter  40 value 101.491385
## iter  50 value 91.058236
## iter  60 value 87.902180
## iter  70 value 83.323307
## iter  80 value 78.092284
## iter  90 value 65.636571
## iter 100 value 61.838710
## final  value 61.838710 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 291.333985 
## iter  10 value 142.771309
## iter  20 value 124.398615
## iter  30 value 113.351486
## iter  40 value 111.586018
## iter  50 value 102.618270
## iter  60 value 85.341622
## iter  70 value 76.029871
## iter  80 value 60.645436
## iter  90 value 43.661945
## iter 100 value 39.100692
## final  value 39.100692 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 271.233293 
## iter  10 value 157.565120
## iter  20 value 139.298671
## iter  30 value 137.817201
## iter  40 value 120.397895
## iter  50 value 119.146212
## iter  60 value 96.296914
## iter  70 value 82.671631
## iter  80 value 79.603889
## iter  90 value 67.710651
## iter 100 value 57.299504
## final  value 57.299504 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 347.973238 
## iter  10 value 140.851484
## iter  20 value 138.035761
## iter  30 value 136.700983
## iter  40 value 120.129885
## iter  50 value 77.632854
## iter  60 value 58.410513
## iter  70 value 53.579554
## iter  80 value 41.315878
## iter  90 value 33.344370
## iter 100 value 32.086743
## final  value 32.086743 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 320.894822 
## iter  10 value 142.305807
## iter  20 value 123.912450
## iter  30 value 119.648290
## iter  40 value 111.563736
## iter  50 value 94.038066
## iter  60 value 68.185060
## iter  70 value 48.012699
## iter  80 value 43.832555
## iter  90 value 43.174330
## iter 100 value 41.232876
## final  value 41.232876 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 380.949566 
## iter  10 value 181.735615
## iter  20 value 136.657136
## iter  30 value 124.450698
## iter  40 value 103.746029
## iter  50 value 88.939299
## iter  60 value 86.213565
## iter  70 value 85.525915
## iter  80 value 83.443307
## iter  90 value 79.489031
## iter 100 value 68.068566
## final  value 68.068566 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 264.593712 
## iter  10 value 161.699237
## iter  20 value 157.497707
## iter  30 value 154.334314
## iter  40 value 154.008551
## iter  50 value 140.814084
## iter  60 value 139.371389
## iter  70 value 137.701133
## iter  80 value 137.609336
## iter  90 value 137.606400
## iter 100 value 137.598885
## final  value 137.598885 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 284.125671 
## iter  10 value 166.101075
## iter  20 value 166.092489
## iter  30 value 166.078110
## iter  40 value 166.046647
## iter  50 value 165.903274
## iter  60 value 160.696044
## iter  70 value 159.122217
## iter  80 value 149.159549
## iter  90 value 148.474708
## iter 100 value 134.568524
## final  value 134.568524 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 325.088682 
## iter  10 value 166.113850
## iter  20 value 166.021739
## iter  30 value 163.464904
## iter  40 value 162.614325
## iter  50 value 150.788411
## iter  60 value 150.571202
## iter  70 value 143.430187
## iter  80 value 139.264658
## iter  90 value 137.732673
## iter 100 value 137.334855
## final  value 137.334855 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 247.838552 
## iter  10 value 154.211104
## iter  20 value 153.644363
## iter  30 value 148.242088
## iter  40 value 144.757582
## iter  50 value 141.755429
## iter  60 value 141.702066
## iter  70 value 141.435878
## iter  80 value 139.832919
## iter  90 value 139.491902
## iter 100 value 139.477505
## final  value 139.477505 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 310.942641 
## iter  10 value 166.659236
## iter  20 value 166.656249
## iter  30 value 166.653241
## iter  40 value 166.650205
## iter  50 value 166.647136
## iter  60 value 166.644025
## iter  70 value 166.640862
## iter  80 value 166.637633
## iter  90 value 166.634321
## iter 100 value 166.630902
## final  value 166.630902 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 373.118359 
## iter  10 value 166.058376
## iter  20 value 150.340850
## iter  30 value 145.156187
## iter  40 value 140.794435
## iter  50 value 137.755195
## iter  60 value 137.630184
## iter  70 value 129.322697
## iter  80 value 123.450166
## iter  90 value 122.343412
## iter 100 value 121.747874
## final  value 121.747874 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 361.086959 
## iter  10 value 166.310764
## iter  20 value 166.292361
## iter  30 value 166.258913
## iter  40 value 166.165448
## iter  50 value 154.753904
## iter  60 value 152.609537
## iter  70 value 151.847167
## iter  80 value 148.558446
## iter  90 value 147.586456
## iter 100 value 127.014093
## final  value 127.014093 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 300.397679 
## iter  10 value 163.853983
## iter  20 value 159.667623
## iter  30 value 159.456808
## iter  40 value 154.206786
## iter  50 value 154.027392
## iter  60 value 142.111451
## iter  70 value 141.829262
## iter  80 value 141.610159
## iter  90 value 141.554833
## iter 100 value 137.370137
## final  value 137.370137 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 252.445032 
## iter  10 value 165.875959
## iter  20 value 155.484947
## iter  30 value 143.502515
## iter  40 value 143.128408
## iter  50 value 114.003515
## iter  60 value 108.863957
## iter  70 value 105.711778
## iter  80 value 103.449660
## iter  90 value 101.869025
## iter 100 value 101.810695
## final  value 101.810695 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 288.497498 
## iter  10 value 168.062877
## iter  20 value 168.011445
## iter  30 value 155.902406
## iter  40 value 153.354359
## iter  50 value 148.498131
## iter  60 value 148.366638
## iter  70 value 146.466175
## iter  80 value 142.492794
## iter  90 value 137.641217
## iter 100 value 137.321951
## final  value 137.321951 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 263.424704 
## iter  10 value 153.570889
## iter  20 value 133.476519
## iter  30 value 132.470236
## iter  40 value 132.361815
## iter  50 value 122.901096
## iter  60 value 122.377844
## iter  70 value 122.343922
## iter  80 value 122.252219
## iter  90 value 119.257196
## iter 100 value 109.422379
## final  value 109.422379 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 326.381968 
## iter  10 value 157.975480
## iter  20 value 129.856396
## iter  30 value 115.686265
## iter  40 value 113.728981
## iter  50 value 90.489319
## iter  60 value 88.802147
## iter  70 value 87.947143
## iter  80 value 85.451918
## iter  90 value 82.412269
## iter 100 value 72.867692
## final  value 72.867692 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 253.404689 
## iter  10 value 167.310732
## iter  20 value 147.495795
## iter  30 value 145.929894
## iter  40 value 145.748506
## iter  50 value 143.734798
## iter  60 value 143.478196
## iter  70 value 138.536377
## iter  80 value 138.134575
## iter  90 value 137.761297
## iter 100 value 137.568894
## final  value 137.568894 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 403.354097 
## iter  10 value 159.701379
## iter  20 value 143.206912
## iter  30 value 143.150543
## iter  40 value 143.034787
## iter  50 value 129.020704
## iter  60 value 113.288832
## iter  70 value 108.202588
## iter  80 value 106.265790
## iter  90 value 106.193164
## iter 100 value 106.147858
## final  value 106.147858 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 251.166646 
## iter  10 value 166.147022
## iter  20 value 164.850319
## iter  30 value 162.693068
## iter  40 value 150.431348
## iter  50 value 135.882937
## iter  60 value 125.865716
## iter  70 value 125.559342
## iter  80 value 125.278679
## iter  90 value 125.158516
## iter 100 value 119.355855
## final  value 119.355855 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 325.924147 
## final  value 164.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 293.162653 
## final  value 164.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 374.795727 
## final  value 164.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 284.224234 
## final  value 164.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 286.130241 
## iter  10 value 151.097561
## iter  10 value 151.097561
## iter  10 value 151.097561
## final  value 151.097561 
## converged
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 292.808693 
## iter  10 value 163.402369
## final  value 160.774390 
## converged
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 342.876619 
## final  value 164.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 284.674371 
## final  value 163.999978 
## converged
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 232.576227 
## final  value 164.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 280.555169 
## final  value 164.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 290.277369 
## final  value 164.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 319.134548 
## final  value 164.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 414.062039 
## final  value 164.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 353.148199 
## iter  10 value 123.393859
## iter  20 value 122.510016
## final  value 122.509804 
## converged
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 375.135101 
## final  value 164.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 295.053492 
## iter  10 value 136.894886
## iter  20 value 121.142939
## iter  30 value 118.102311
## iter  40 value 117.747443
## iter  50 value 115.088047
## iter  60 value 111.176095
## iter  70 value 109.912927
## iter  80 value 109.239662
## final  value 109.236551 
## converged
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 265.642836 
## iter  10 value 153.356644
## iter  20 value 136.500393
## iter  30 value 136.479137
## iter  30 value 136.479137
## iter  30 value 136.479137
## final  value 136.479137 
## converged
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 306.708657 
## iter  10 value 151.635719
## iter  20 value 137.677862
## iter  30 value 136.557797
## iter  40 value 136.479144
## final  value 136.479137 
## converged
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 269.258682 
## iter  10 value 144.230273
## iter  20 value 136.720219
## iter  30 value 130.905348
## iter  40 value 119.519152
## iter  50 value 118.191849
## iter  60 value 117.901486
## iter  70 value 117.540431
## iter  80 value 116.825543
## iter  90 value 112.719743
## iter 100 value 111.389068
## final  value 111.389068 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 276.875754 
## iter  10 value 152.023363
## iter  20 value 137.674260
## iter  30 value 123.728097
## iter  40 value 119.636461
## iter  50 value 117.471022
## iter  60 value 115.502735
## iter  70 value 110.077783
## iter  80 value 104.114010
## iter  90 value 103.775504
## iter 100 value 103.731568
## final  value 103.731568 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 266.220026 
## iter  10 value 169.640408
## iter  20 value 136.150265
## iter  30 value 114.945242
## iter  40 value 112.400910
## iter  50 value 107.301421
## iter  60 value 92.177363
## iter  70 value 77.023809
## iter  80 value 70.868102
## iter  90 value 67.242838
## iter 100 value 66.079914
## final  value 66.079914 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 240.716857 
## iter  10 value 138.832485
## iter  20 value 122.141691
## iter  30 value 118.511850
## iter  40 value 101.962572
## iter  50 value 89.159514
## iter  60 value 84.480333
## iter  70 value 83.059083
## iter  80 value 82.333780
## iter  90 value 80.030813
## iter 100 value 71.490954
## final  value 71.490954 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 386.296370 
## iter  10 value 137.176236
## iter  20 value 122.837121
## iter  30 value 106.951406
## iter  40 value 103.885829
## iter  50 value 103.724417
## iter  60 value 103.703859
## iter  70 value 103.700866
## iter  80 value 103.698405
## iter  90 value 103.681398
## iter 100 value 103.353643
## final  value 103.353643 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 293.527885 
## iter  10 value 156.921065
## iter  20 value 139.181374
## iter  30 value 122.557712
## iter  40 value 120.319513
## iter  50 value 118.275492
## iter  60 value 116.355373
## iter  70 value 114.927513
## iter  80 value 76.033990
## iter  90 value 57.037417
## iter 100 value 55.432289
## final  value 55.432289 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 282.718262 
## iter  10 value 141.235217
## iter  20 value 137.479245
## iter  30 value 123.463911
## iter  40 value 117.315296
## iter  50 value 115.250136
## iter  60 value 92.522917
## iter  70 value 88.172954
## iter  80 value 80.977453
## iter  90 value 76.191639
## iter 100 value 73.210641
## final  value 73.210641 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 335.416751 
## iter  10 value 158.410421
## iter  20 value 133.427123
## iter  30 value 109.155646
## iter  40 value 107.617648
## iter  50 value 98.797537
## iter  60 value 79.996050
## iter  70 value 50.844874
## iter  80 value 40.271007
## iter  90 value 36.596569
## iter 100 value 35.870738
## final  value 35.870738 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 255.380632 
## iter  10 value 142.799669
## iter  20 value 122.289234
## iter  30 value 116.505249
## iter  40 value 112.786855
## iter  50 value 108.022173
## iter  60 value 93.305037
## iter  70 value 90.397478
## iter  80 value 77.837444
## iter  90 value 70.998564
## iter 100 value 69.092851
## final  value 69.092851 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 317.862424 
## iter  10 value 146.042207
## iter  20 value 126.652114
## iter  30 value 122.673265
## iter  40 value 109.754209
## iter  50 value 99.279204
## iter  60 value 75.733709
## iter  70 value 54.376561
## iter  80 value 40.029621
## iter  90 value 37.061773
## iter 100 value 33.382545
## final  value 33.382545 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 312.554735 
## iter  10 value 158.125612
## iter  20 value 139.651982
## iter  30 value 135.722348
## iter  40 value 122.978151
## iter  50 value 103.496124
## iter  60 value 80.503799
## iter  70 value 57.565724
## iter  80 value 52.654433
## iter  90 value 51.041576
## iter 100 value 50.521202
## final  value 50.521202 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 316.125254 
## iter  10 value 198.412316
## iter  20 value 170.226324
## iter  30 value 122.089391
## iter  40 value 98.158950
## iter  50 value 88.338702
## iter  60 value 85.468952
## iter  70 value 83.628279
## iter  80 value 81.240495
## iter  90 value 73.353371
## iter 100 value 53.852745
## final  value 53.852745 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  31
## initial  value 325.003699 
## iter  10 value 164.149907
## iter  20 value 155.607772
## iter  30 value 141.301203
## iter  40 value 141.273255
## iter  50 value 140.667121
## iter  60 value 115.488774
## iter  70 value 112.961648
## iter  80 value 112.421382
## iter  90 value 111.463409
## iter 100 value 110.084395
## final  value 110.084395 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  31
## initial  value 287.966423 
## iter  10 value 162.651745
## iter  20 value 137.639642
## iter  30 value 116.591011
## iter  40 value 115.621209
## iter  50 value 113.842120
## iter  60 value 110.849161
## iter  70 value 102.163294
## iter  80 value 96.891607
## iter  90 value 90.930903
## iter 100 value 87.565702
## final  value 87.565702 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  31
## initial  value 279.556093 
## iter  10 value 151.103398
## iter  20 value 148.910446
## iter  30 value 144.673929
## iter  40 value 143.740894
## iter  50 value 141.470402
## iter  60 value 140.583186
## iter  70 value 140.490882
## iter  80 value 137.371545
## iter  90 value 137.305059
## iter 100 value 135.694160
## final  value 135.694160 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  31
## initial  value 312.779400 
## iter  10 value 164.025750
## iter  20 value 163.972475
## iter  30 value 163.199613
## iter  40 value 160.711905
## iter  50 value 148.599221
## iter  60 value 142.801038
## iter  70 value 142.742157
## iter  80 value 140.451254
## iter  90 value 138.489709
## iter 100 value 135.352665
## final  value 135.352665 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  31
## initial  value 303.184933 
## iter  10 value 164.045425
## iter  20 value 163.297717
## iter  30 value 147.935127
## iter  40 value 145.784792
## iter  50 value 142.042279
## iter  60 value 139.931265
## iter  70 value 138.565995
## iter  80 value 137.862222
## iter  90 value 135.346813
## iter 100 value 135.262284
## final  value 135.262284 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  79
## initial  value 237.426192 
## iter  10 value 164.368639
## iter  20 value 164.324052
## iter  30 value 151.619292
## iter  40 value 150.824156
## iter  50 value 149.190102
## iter  60 value 143.722890
## iter  70 value 143.714651
## iter  80 value 141.304678
## iter  90 value 140.491205
## iter 100 value 122.518139
## final  value 122.518139 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  79
## initial  value 329.300717 
## iter  10 value 163.700210
## iter  20 value 160.524387
## iter  30 value 157.709286
## iter  40 value 144.806668
## iter  50 value 143.104129
## iter  60 value 137.872481
## iter  70 value 135.426629
## iter  80 value 117.706507
## iter  90 value 111.704116
## iter 100 value 111.550471
## final  value 111.550471 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  79
## initial  value 257.912873 
## iter  10 value 164.186938
## iter  20 value 164.180158
## iter  30 value 164.165651
## iter  40 value 161.108057
## iter  50 value 149.310790
## iter  60 value 149.145479
## iter  70 value 144.025667
## iter  80 value 144.019536
## iter  90 value 141.085979
## iter 100 value 140.792402
## final  value 140.792402 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  79
## initial  value 417.131887 
## iter  10 value 153.087733
## iter  20 value 150.995944
## iter  30 value 145.994151
## iter  40 value 143.870484
## iter  50 value 138.952419
## iter  60 value 138.584776
## iter  70 value 135.981291
## iter  80 value 135.339974
## iter  90 value 135.136951
## iter 100 value 135.129587
## final  value 135.129587 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  79
## initial  value 361.540206 
## iter  10 value 163.908848
## iter  20 value 154.483962
## iter  30 value 151.718215
## iter  40 value 151.709957
## iter  50 value 145.750399
## iter  60 value 145.666186
## iter  70 value 144.752985
## iter  80 value 144.729374
## iter  90 value 144.635834
## iter 100 value 135.424986
## final  value 135.424986 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 315.154185 
## iter  10 value 164.446620
## iter  20 value 158.464403
## iter  30 value 156.210931
## iter  40 value 153.772693
## iter  50 value 153.511441
## iter  60 value 153.485847
## iter  70 value 153.469824
## iter  80 value 142.114948
## iter  90 value 140.579803
## iter 100 value 140.560621
## final  value 140.560621 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 357.441586 
## iter  10 value 165.071674
## iter  20 value 147.735437
## iter  30 value 140.917045
## iter  40 value 134.806666
## iter  50 value 133.608818
## iter  60 value 120.182983
## iter  70 value 119.158153
## iter  80 value 118.469402
## iter  90 value 118.198662
## iter 100 value 103.387833
## final  value 103.387833 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 289.012645 
## iter  10 value 164.151870
## iter  20 value 164.145216
## iter  30 value 164.131205
## iter  40 value 164.074791
## iter  50 value 160.988625
## iter  60 value 160.672912
## iter  70 value 147.688150
## iter  80 value 145.715314
## iter  90 value 138.864448
## iter 100 value 133.799232
## final  value 133.799232 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 315.572690 
## iter  10 value 166.082692
## iter  20 value 158.839249
## iter  30 value 145.778434
## iter  40 value 129.845364
## iter  50 value 129.565623
## iter  60 value 112.109437
## iter  70 value 91.017853
## iter  80 value 89.630758
## iter  90 value 84.876302
## iter 100 value 83.686301
## final  value 83.686301 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 292.128410 
## iter  10 value 163.366612
## iter  20 value 143.733267
## iter  30 value 140.512592
## iter  40 value 140.023807
## iter  50 value 136.489931
## iter  60 value 135.350309
## iter  70 value 135.283484
## iter  80 value 135.137721
## iter  90 value 135.127928
## iter 100 value 128.409654
## final  value 128.409654 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  127
## initial  value 496.782379 
## iter  10 value 194.706864
## iter  20 value 173.310084
## iter  30 value 172.523798
## iter  40 value 149.243683
## iter  50 value 136.878458
## iter  60 value 120.532026
## iter  70 value 114.537248
## iter  80 value 93.868967
## iter  90 value 83.998916
## iter 100 value 63.580810
## final  value 63.580810 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  127
## initial  value 413.704684 
## iter  10 value 203.809428
## iter  20 value 147.737364
## iter  30 value 105.908245
## iter  40 value 95.272392
## iter  50 value 79.384334
## iter  60 value 61.838929
## iter  70 value 60.207525
## iter  80 value 56.459920
## iter  90 value 39.484891
## iter 100 value 31.818594
## final  value 31.818594 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  127
## initial  value 289.593449 
## iter  10 value 172.893334
## iter  20 value 169.956522
## iter  30 value 132.692761
## iter  40 value 117.063088
## iter  50 value 104.649917
## iter  60 value 96.182552
## iter  70 value 90.625599
## iter  80 value 64.239252
## iter  90 value 38.767366
## iter 100 value 33.202739
## final  value 33.202739 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  127
## initial  value 537.037849 
## iter  10 value 204.836220
## iter  20 value 178.180130
## iter  30 value 172.408877
## iter  40 value 156.601084
## iter  50 value 143.768218
## iter  60 value 88.820218
## iter  70 value 72.528848
## iter  80 value 66.001124
## iter  90 value 49.079135
## iter 100 value 41.835933
## final  value 41.835933 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  127
## initial  value 386.380833 
## iter  10 value 261.957871
## iter  20 value 181.648209
## iter  30 value 172.112124
## iter  40 value 171.672350
## iter  50 value 157.546931
## iter  60 value 149.794735
## iter  70 value 142.385808
## iter  80 value 131.175192
## iter  90 value 104.110232
## iter 100 value 87.435405
## final  value 87.435405 
## stopped after 100 iterations
prediction_stack <- stack(ensemble)
names(prediction_stack) <- models
plot(prediction_stack)

############### Accuracy assessment - confusion matrices - ####
models <- c("svmPoly", "svmRadial", "svmLinear", "rf", "knn", "gbm", "pls", "mda", "amdai", "avNNet", "Ens_SV", "Ens_WV")
mymodels <- data.frame(matrix (nrow=length(models), ncol= 7))
colnames (mymodels)  <- c("Accuracy", "Kappa", "AccuracyLower", "AccuracyUpper",
                          "AccuracyNull", "AccuracyPValue", "McnemarPValue")
rownames(mymodels) <- models
#empty table for Producer's and user's accuracies
my.acc <- data.frame(matrix (nrow=length(levels(train_2003$class)), ncol= 3))
colnames (my.acc) <- c("PrA", "UrA", "alg")
rownames(my.acc) <- levels(train_2003$class)
myacc <- do.call("rbind", replicate(10, my.acc, simplify = F))
myacc$class <- levels(train_2003$class)
myacc$alg <- rep(models[1:10], each=length(levels(train_2003$class)))
#
uniqueClasses <- unique(train_2003$class)
set.seed(7)
xy_val <- lapply (uniqueClasses, function(class_i){
  class_data <- subset(val_2003, class == class_i)
  classpts <- spsample(class_data, type = "stratified", n = 100)
  classpts$class <-rep(class_i, length(classpts))
  return(classpts)
})
#rbind the spatialpointdataframe into  asingle object
xy_val <- do.call("rbind", xy_val)

models <- c("svmPoly", "svmRadial", "svmLinear", "rf", "knn", "gbm", "pls", "mda", "amdai", "avNNet")

for (mod in models){
  
  #extract predictions
  pred <- extract(prediction_stack[[mod]], xy_val, cellnumbers=T)
  
  #discard duplicates cells and 'cell' column
  dup <- duplicated(pred)
  pred <- pred[!dup,mod]
  obs <- xy_val$class[!dup]
  
  #recode integers for predictions
  uniqueClasses <- sort(uniqueClasses)
  valFactor <- uniqueClasses[pred]
  head(valFactor)
  
  mymodels[rownames(mymodels) %in% mod,]  <- confusionMatrix(obs, reference = valFactor)[[3]]
  table <- confusionMatrix(obs, reference = valFactor)[[2]]
  PrA <- diag(table)/rowSums(table)
  UrA <- diag(table)/colSums(table)
  myacc[myacc$alg %in% mod,"PrA"] <- as.vector(PrA)
  myacc[myacc$alg %in% mod,"UrA"] <- as.vector(UrA)
  
}

## validate the ensemble map
#simply voting ensemble procedure
Ensemble <- modal(prediction_stack[[c(1,2,3,4,5,6,8,9)]])
names(Ensemble) <- "Ens_SV"
pred <- extract(Ensemble, xy_val, cellnumbers=T)

#discard duplicates cells and 'cell' column
dup <- duplicated(pred)
pred <- pred[!dup,"Ens_SV"]
obs <- xy_val$class[!dup]

#recode integers for predictions
uniqueClasses <- sort(uniqueClasses)
valFactor <- uniqueClasses[pred]
head(valFactor)
## [1] Area      Area      Duna gris Area      Area      Area     
## 7 Levels: Area Auga Bosque Carrizal Duna gris ... Vexetacion halofila
mymodels[rownames(mymodels) %in% "Ens_SV",] <-confusionMatrix(obs, reference = valFactor)[[3]]
table <- confusionMatrix(obs, reference = valFactor)[[2]]
PrA <- diag(table)/rowSums(table)
UrA <- diag(table)/colSums(table)
myacc_Ens_SV <- as.data.frame(cbind(PrA, UrA))
myacc_Ens_SV$alg <- "Ens_SV"
myacc_Ens_SV$class <- rownames(myacc_Ens_SV)

##weithed voting ensemnble procedure
Ensemble2 <- modal(stack(replicate(mymodels[rownames(mymodels)[2], "Accuracy"]*100, prediction_stack[[1]])),
                   stack(replicate(mymodels[rownames(mymodels)[8], "Accuracy"]*100, prediction_stack[[2]])),
                   stack(replicate(mymodels[rownames(mymodels)[8], "Accuracy"]*100, prediction_stack[[3]])),
                   stack(replicate(mymodels[rownames(mymodels)[8], "Accuracy"]*100, prediction_stack[[4]])),
                   stack(replicate(mymodels[rownames(mymodels)[8], "Accuracy"]*100, prediction_stack[[5]])),
                   stack(replicate(mymodels[rownames(mymodels)[8], "Accuracy"]*100, prediction_stack[[6]])),
                   
                   stack(replicate(mymodels[rownames(mymodels)[8], "Accuracy"]*100, prediction_stack[[8]])),
                   stack(replicate(mymodels[rownames(mymodels)[9], "Accuracy"]*100, prediction_stack[[9]])))
names(Ensemble2) <- "Ens_Wv"
pred <- extract(Ensemble2, xy_val, cellnumbers=T)
#discard duplicates cells and 'cell' column
dup <- duplicated(pred)
pred <- pred[!dup,"Ens_Wv"]
obs <- xy_val$class[!dup]

#recode integers for predictions
uniqueClasses <- sort(uniqueClasses)
valFactor <- uniqueClasses[pred]
head(valFactor)
## [1] Area      Area      Duna gris Area      Area      Area     
## 7 Levels: Area Auga Bosque Carrizal Duna gris ... Vexetacion halofila
mymodels[rownames(mymodels) %in% "Ens_WV",] <-confusionMatrix(obs, reference = valFactor)[[3]]
table <- confusionMatrix(obs, reference = valFactor)[[2]]
PrA <- diag(table)/rowSums(table)
UrA <- diag(table)/colSums(table)
myacc_Ens_WV <- as.data.frame(cbind(PrA, UrA))
myacc_Ens_WV$alg <- "Ens_WV"
myacc_Ens_WV$class <- rownames(myacc_Ens_WV)

####
myacc <- rbind(myacc, myacc_Ens_SV, myacc_Ens_WV)

library(rasterVis)
## Loading required package: latticeExtra
## Loading required package: RColorBrewer
## 
## Attaching package: 'latticeExtra'
## The following object is masked from 'package:ggplot2':
## 
##     layer
library(ggplot2)
### 9 x 9; 7 x 6
gplot(Ensemble) + geom_raster(aes(fill = value)) + 
  facet_wrap(~ variable) +
  scale_fill_gradientn(name="Environmental units 2013",colours=c("grey90", "blue3", "darkgreen" ,"yellow", "seagreen4","orange1","yellowgreen"),
                       breaks=c(1,2,3,4,5,6,7), na.value = "white", labels=c("Sand", "Water", "Forest", "Reeds", "Grey Dunes","Meadows and grasslands", "Halophyte vegetation")) +
  theme(plot.margin = unit(c(0.001,0.001,0.001,0.001), "cm"), panel.grid.major = element_line(colour = "grey70", size = 0.2), 
        panel.grid.minor = element_blank(), panel.background = element_rect(fill = "white", colour = "white")) 

gplot(Ensemble2) + geom_raster(aes(fill = value)) + 
  facet_wrap(~ variable) +
  scale_fill_gradientn(name="Environmental units 2013",colours=c("grey90", "blue3", "darkgreen" ,"yellow", "seagreen4","orange1","yellowgreen"),
                       breaks=c(1,2,3,4,5,6,7), na.value = "white", labels=c("Sand", "Water", "Forest", "Reeds", "Grey Dunes","Meadows and grasslands", "Halophyte vegetation")) +
  theme(plot.margin = unit(c(0.001,0.001,0.001,0.001), "cm"), panel.grid.major = element_line(colour = "grey70", size = 0.2), 
        panel.grid.minor = element_blank(), panel.background = element_rect(fill = "white", colour = "white")) 

#write.csv2(mymodels, "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/models.metrics2003_rev.csv")
#write.csv2(myacc, "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/acc.metrics2003_rev.csv")
#writeRaster(Ensemble, bylayer = T, suffix = 'names', filename = "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/Ens_SV_2003.tif", datatype = 'INT2S', overwrite=T, options=c("TFW=YES"))
#writeRaster(Ensemble2, filename = "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/Ens_WV_2003.tif", datatype = 'INT2S', overwrite=T, options=c("TFW=YES"))
#writeRaster(prediction_stack, bylayer = T,  suffix = 'names', filename = "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/Raster/LULCmap_2003.tif", datatype = 'INT2S', overwrite=T, options=c("TFW=YES"))

save.image("E://USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/ImageProcess2003_revision.RData")

################################################################################################ 
#### Pre-processing of Landsat images for year 2016, classification and validation procedures###  
################################################################################################ 
library(RStoolbox) 
library(raster)
library(rgdal)
metaL8May2016 <- readMeta("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/LandsatData/2016/LC82050302016123LGN00/LC82050302016123LGN00/LC82050302016123LGN00_MTL.txt")
metaL8Sep2016 <- readMeta("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/LandsatData/2016/LC82050302016267LGN00/LC82050302016267LGN00/LC82050302016267LGN00_MTL.txt")

summary(metaL8May2016)
## Scene:      LC82050302016123LGN00 
## Satellite:  LANDSAT8 
## Sensor:     OLI_TIRS 
## Date:       2016-05-02 
## Path/Row:   205/30 
## Projection: +proj=utm +zone=29 +units=m +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
## 
## Data:
##                                FILES QUANTITY CATEGORY
## B1_dn   LC82050302016123LGN00_B1.TIF       dn    image
## B2_dn   LC82050302016123LGN00_B2.TIF       dn    image
## B3_dn   LC82050302016123LGN00_B3.TIF       dn    image
## B4_dn   LC82050302016123LGN00_B4.TIF       dn    image
## B5_dn   LC82050302016123LGN00_B5.TIF       dn    image
## B6_dn   LC82050302016123LGN00_B6.TIF       dn    image
## B7_dn   LC82050302016123LGN00_B7.TIF       dn    image
## B9_dn   LC82050302016123LGN00_B9.TIF       dn    image
## B10_dn LC82050302016123LGN00_B10.TIF       dn    image
## B11_dn LC82050302016123LGN00_B11.TIF       dn    image
## B8_dn   LC82050302016123LGN00_B8.TIF       dn      pan
## QA_dn  LC82050302016123LGN00_BQA.TIF       dn       qa
## 
## Available calibration parameters (gain and offset):
##  dn -> radiance (toa)
##  dn -> reflectance (toa)
##  dn -> brightness temperature (toa)
summary(metaL8Sep2016)
## Scene:      LC82050302016267LGN00 
## Satellite:  LANDSAT8 
## Sensor:     OLI_TIRS 
## Date:       2016-09-23 
## Path/Row:   205/30 
## Projection: +proj=utm +zone=29 +units=m +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
## 
## Data:
##                                FILES QUANTITY CATEGORY
## B1_dn   LC82050302016267LGN00_B1.TIF       dn    image
## B2_dn   LC82050302016267LGN00_B2.TIF       dn    image
## B3_dn   LC82050302016267LGN00_B3.TIF       dn    image
## B4_dn   LC82050302016267LGN00_B4.TIF       dn    image
## B5_dn   LC82050302016267LGN00_B5.TIF       dn    image
## B6_dn   LC82050302016267LGN00_B6.TIF       dn    image
## B7_dn   LC82050302016267LGN00_B7.TIF       dn    image
## B9_dn   LC82050302016267LGN00_B9.TIF       dn    image
## B10_dn LC82050302016267LGN00_B10.TIF       dn    image
## B11_dn LC82050302016267LGN00_B11.TIF       dn    image
## B8_dn   LC82050302016267LGN00_B8.TIF       dn      pan
## QA_dn  LC82050302016267LGN00_BQA.TIF       dn       qa
## 
## Available calibration parameters (gain and offset):
##  dn -> radiance (toa)
##  dn -> reflectance (toa)
##  dn -> brightness temperature (toa)
L8May2016 <- stackMeta(metaL8May2016)
L8Sep2016 <- stackMeta(metaL8Sep2016)

################### calibration and radiometric correction if necessary
#Data conversion: From DNs to Reflectances
#Radiometric calibration
metaL8May2016$CALRAD
##           offset       gain
## B1_dn  -61.78698 0.01235700
## B2_dn  -63.27062 0.01265400
## B3_dn  -58.30334 0.01166100
## B4_dn  -49.16466 0.00983290
## B5_dn  -30.08632 0.00601730
## B6_dn   -7.48219 0.00149640
## B7_dn   -2.52190 0.00050438
## B8_dn  -55.64086 0.01112800
## B9_dn  -11.75842 0.00235170
## B10_dn   0.10000 0.00033420
## B11_dn   0.10000 0.00033420
metaL8Sep2016$CALRAD
##           offset       gain
## B1_dn  -62.36891 0.01247400
## B2_dn  -63.86652 0.01277300
## B3_dn  -58.85245 0.01177000
## B4_dn  -49.62770 0.00992550
## B5_dn  -30.36968 0.00607390
## B6_dn   -7.55266 0.00151050
## B7_dn   -2.54565 0.00050913
## B8_dn  -56.16490 0.01123300
## B9_dn  -11.86916 0.00237380
## B10_dn   0.10000 0.00033420
## B11_dn   0.10000 0.00033420
L8May2016_rad <- radCor(L8May2016, metaData = metaL8May2016, method="rad")
L8Sep2016_rad <- radCor(L8Sep2016, metaData = metaL8Sep2016, method="rad")
dataType(L8May2016_rad[[1]]) #dataType from integer to float
## [1] "FLT8S"
dataType(L8Sep2016_rad[[1]])
## [1] "FLT8S"
plotRGB(L8May2016_rad, r = 4, g = 3, b = 2, stretch = "lin")

plot(L8May2016_rad)

plotRGB(L8Sep2016_rad, r = 4, g = 3, b = 2, stretch = "lin")

plot(L8Sep2016_rad)

##crop the images to our study area (Natural Park - Corrubedo)
study_area <- readOGR("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/AreaEstudio/LimiteParque", "PNCorrubedo_reproj")
## OGR data source with driver: ESRI Shapefile 
## Source: "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/AreaEstudio/LimiteParque", layer: "PNCorrubedo_reproj"
## with 1 features
## It has 10 fields
#May
L8May2016_rad_PN <- crop(L8May2016_rad,study_area)
L8May2016_rad_PN_mask <- mask(L8May2016_rad_PN, study_area)
plotRGB(L8May2016_rad_PN_mask, r = 4, g = 3, b = 2, stretch = "hist")#rgb

plotRGB(L8May2016_rad_PN_mask, r = 6, g = 5, b = 3, stretch = "hist")#vegetation

plotRGB(L8May2016_rad_PN_mask, r = 5, g = 6, b = 2, stretch = "hist")# brown

#September
L8Sep2016_rad_PN <- crop(L8Sep2016_rad,study_area)
L8Sep2016_rad_PN_mask <- mask(L8Sep2016_rad_PN,study_area)
plotRGB(L8Sep2016_rad_PN_mask, r = 4, g = 3, b = 2, stretch = "hist")#rgb

plotRGB(L8Sep2016_rad_PN_mask, r = 6, g = 5, b = 3, stretch = "hist")#vegetation

plotRGB(L8Sep2016_rad_PN_mask, r = 5, g = 6, b = 2, stretch = "hist")# brown

#Spectral index - Normalised Difference Water Index: NDWI = (green - nir)/(green + nir)
NDWI_may <- spectralIndices(L8May2016_rad_PN_mask, blue = "B2_tra", green = "B3_tra", red = "B4_tra", 
                            nir = "B5_tra", swir2 = "B6_tra", swir3 = "B7_tra", indices = "NDWI")#
NDWI_sep <- spectralIndices(L8Sep2016_rad_PN_mask, blue = "B2_tra", green = "B3_tra", red = "B4_tra", 
                            nir = "B5_tra", swir2 = "B6_tra", swir3 = "B7_tra", indices = "NDWI")#
NDVI_may <- spectralIndices(L8May2016_rad_PN_mask, blue = "B2_tra", green = "B3_tra", red = "B4_tra", 
                            nir = "B5_tra", swir2 = "B6_tra", swir3 = "B7_tra", indices = "NDVI")#
NDVI_sep <- spectralIndices(L8Sep2016_rad_PN_mask, blue = "B2_tra", green = "B3_tra", red = "B4_tra", 
                            nir = "B5_tra", swir2 = "B6_tra", swir3 = "B7_tra", indices = "NDVI")#

plot(NDWI_may) 

plot(NDWI_sep)

plot(NDVI_may)

plot(NDVI_sep) 

#join both datasets (sep - may)
L82016 <- stack(L8May2016_rad_PN_mask, L8Sep2016_rad_PN_mask)
L82016 <- L82016[[c(2,3,4,5,6,7,12,13,14,15,16,17)]] #subset - only optical radiometric bands
#join with spectral indices
L82016 <- stack(L82016,NDWI_may,NDWI_sep)  
L82016 <- stack(L82016,NDVI_may,NDVI_sep)  

############### training data #############
#read vector files for training dataset
train_2016 <- readOGR("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/TrainAreas", "TrainAreas_2016_8cat_v2")
## OGR data source with driver: ESRI Shapefile 
## Source: "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/TrainAreas", layer: "TrainAreas_2016_8cat_v2"
## with 47 features
## It has 2 fields
## Integer64 fields read as strings:  id
val_2016 <- readOGR("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/TrainAreas", "TestAreas_2016_8cat_v2")
## OGR data source with driver: ESRI Shapefile 
## Source: "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/TrainAreas", layer: "TestAreas_2016_8cat_v2"
## with 50 features
## It has 2 fields
## Integer64 fields read as strings:  id
######### classification procedures
library(caret)
library(randomForest)
library(party)
library(pls)
library(e1071)
library(kernlab)
library(adaptDA)

#ensemble of predictions
models <- c("svmPoly", "svmRadial", "svmLinear", "rf", "knn", "gbm", "pls", "mda", "amdai", "avNNet")

ensemble <- lapply (models, function(mod){
  set.seed(5)
  sc <- superClass(L82016, model= mod, trainData = train_2016, 
                   responseCol = "class")
  return(sc$map)
})
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    0.9248
##      2        1.5570             nan     0.1000    0.5633
##      3        1.2431             nan     0.1000    0.3443
##      4        1.0327             nan     0.1000    0.2737
##      5        0.8728             nan     0.1000    0.2078
##      6        0.7515             nan     0.1000    0.1735
##      7        0.6490             nan     0.1000    0.1294
##      8        0.5699             nan     0.1000    0.1032
##      9        0.5056             nan     0.1000    0.1047
##     10        0.4438             nan     0.1000    0.0742
##     20        0.1413             nan     0.1000    0.0203
##     40        0.0219             nan     0.1000    0.0005
##     60        0.0063             nan     0.1000   -0.0000
##     80        0.0025             nan     0.1000    0.0001
##    100        0.0007             nan     0.1000    0.0000
##    120        0.0003             nan     0.1000    0.0000
##    140        0.0001             nan     0.1000   -0.0000
##    150        0.0001             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    0.9687
##      2        1.4920             nan     0.1000    0.5519
##      3        1.1696             nan     0.1000    0.3615
##      4        0.9554             nan     0.1000    0.2726
##      5        0.7897             nan     0.1000    0.2077
##      6        0.6639             nan     0.1000    0.1861
##      7        0.5497             nan     0.1000    0.1431
##      8        0.4635             nan     0.1000    0.1079
##      9        0.3961             nan     0.1000    0.0925
##     10        0.3402             nan     0.1000    0.0785
##     20        0.0731             nan     0.1000    0.0137
##     40        0.0045             nan     0.1000    0.0002
##     60        0.0004             nan     0.1000    0.0000
##     80        0.0001             nan     0.1000    0.0000
##    100        0.0000             nan     0.1000    0.0000
##    120        0.0000             nan     0.1000   -0.0000
##    140        0.0000             nan     0.1000    0.0000
##    150        0.0000             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    1.0724
##      2        1.4318             nan     0.1000    0.5700
##      3        1.0969             nan     0.1000    0.3623
##      4        0.8799             nan     0.1000    0.2700
##      5        0.7220             nan     0.1000    0.1913
##      6        0.6062             nan     0.1000    0.1519
##      7        0.5095             nan     0.1000    0.1356
##      8        0.4291             nan     0.1000    0.1032
##      9        0.3656             nan     0.1000    0.0894
##     10        0.3086             nan     0.1000    0.0684
##     20        0.0658             nan     0.1000    0.0093
##     40        0.0045             nan     0.1000    0.0002
##     60        0.0004             nan     0.1000    0.0000
##     80        0.0001             nan     0.1000    0.0000
##    100        0.0000             nan     0.1000    0.0000
##    120        0.0000             nan     0.1000   -0.0000
##    140        0.0000             nan     0.1000   -0.0000
##    150        0.0000             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    0.9429
##      2        1.5283             nan     0.1000    0.4805
##      3        1.2382             nan     0.1000    0.3448
##      4        1.0360             nan     0.1000    0.2650
##      5        0.8801             nan     0.1000    0.2055
##      6        0.7579             nan     0.1000    0.1684
##      7        0.6584             nan     0.1000    0.1281
##      8        0.5803             nan     0.1000    0.1236
##      9        0.5086             nan     0.1000    0.1051
##     10        0.4458             nan     0.1000    0.0830
##     20        0.1429             nan     0.1000    0.0195
##     40        0.0225             nan     0.1000    0.0015
##     60        0.0046             nan     0.1000    0.0003
##     80        0.0010             nan     0.1000    0.0001
##    100        0.0002             nan     0.1000   -0.0000
##    120        0.0001             nan     0.1000    0.0000
##    140        0.0000             nan     0.1000   -0.0000
##    150        0.0000             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    0.9328
##      2        1.4838             nan     0.1000    0.5206
##      3        1.1643             nan     0.1000    0.3513
##      4        0.9505             nan     0.1000    0.2578
##      5        0.7871             nan     0.1000    0.2085
##      6        0.6611             nan     0.1000    0.1660
##      7        0.5573             nan     0.1000    0.1483
##      8        0.4705             nan     0.1000    0.1162
##      9        0.3957             nan     0.1000    0.0904
##     10        0.3383             nan     0.1000    0.0871
##     20        0.0729             nan     0.1000    0.0117
##     40        0.0068             nan     0.1000    0.0007
##     60        0.0009             nan     0.1000    0.0001
##     80        0.0001             nan     0.1000    0.0000
##    100        0.0000             nan     0.1000   -0.0000
##    120        0.0000             nan     0.1000   -0.0000
##    140        0.0000             nan     0.1000   -0.0000
##    150        0.0000             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    1.0225
##      2        1.4583             nan     0.1000    0.5148
##      3        1.1474             nan     0.1000    0.3663
##      4        0.9322             nan     0.1000    0.2626
##      5        0.7690             nan     0.1000    0.2156
##      6        0.6387             nan     0.1000    0.1543
##      7        0.5417             nan     0.1000    0.1297
##      8        0.4586             nan     0.1000    0.1144
##      9        0.3851             nan     0.1000    0.0784
##     10        0.3325             nan     0.1000    0.0761
##     20        0.0720             nan     0.1000    0.0126
##     40        0.0044             nan     0.1000    0.0004
##     60        0.0004             nan     0.1000    0.0001
##     80        0.0001             nan     0.1000   -0.0000
##    100        0.0000             nan     0.1000   -0.0000
##    120        0.0000             nan     0.1000   -0.0000
##    140        0.0000             nan     0.1000   -0.0000
##    150        0.0000             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    0.9611
##      2        1.5294             nan     0.1000    0.4573
##      3        1.2564             nan     0.1000    0.3707
##      4        1.0468             nan     0.1000    0.2696
##      5        0.8919             nan     0.1000    0.2275
##      6        0.7580             nan     0.1000    0.1631
##      7        0.6610             nan     0.1000    0.1454
##      8        0.5770             nan     0.1000    0.1071
##      9        0.5111             nan     0.1000    0.0868
##     10        0.4575             nan     0.1000    0.0788
##     20        0.1415             nan     0.1000    0.0176
##     40        0.0199             nan     0.1000    0.0018
##     60        0.0034             nan     0.1000    0.0003
##     80        0.0006             nan     0.1000    0.0000
##    100        0.0001             nan     0.1000    0.0000
##    120        0.0000             nan     0.1000    0.0000
##    140        0.0000             nan     0.1000    0.0000
##    150        0.0000             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    1.0293
##      2        1.4578             nan     0.1000    0.5396
##      3        1.1401             nan     0.1000    0.3436
##      4        0.9335             nan     0.1000    0.2929
##      5        0.7565             nan     0.1000    0.2194
##      6        0.6243             nan     0.1000    0.1615
##      7        0.5262             nan     0.1000    0.1311
##      8        0.4460             nan     0.1000    0.1144
##      9        0.3766             nan     0.1000    0.0830
##     10        0.3242             nan     0.1000    0.0797
##     20        0.0660             nan     0.1000    0.0134
##     40        0.0043             nan     0.1000    0.0006
##     60        0.0004             nan     0.1000    0.0000
##     80        0.0001             nan     0.1000   -0.0000
##    100        0.0000             nan     0.1000    0.0000
##    120        0.0000             nan     0.1000    0.0000
##    140        0.0000             nan     0.1000   -0.0000
##    150        0.0000             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    0.9502
##      2        1.4947             nan     0.1000    0.5400
##      3        1.1697             nan     0.1000    0.4054
##      4        0.9304             nan     0.1000    0.2558
##      5        0.7700             nan     0.1000    0.2233
##      6        0.6386             nan     0.1000    0.1902
##      7        0.5257             nan     0.1000    0.1358
##      8        0.4451             nan     0.1000    0.1118
##      9        0.3770             nan     0.1000    0.0965
##     10        0.3156             nan     0.1000    0.0650
##     20        0.0676             nan     0.1000    0.0100
##     40        0.0035             nan     0.1000    0.0004
##     60        0.0003             nan     0.1000   -0.0000
##     80        0.0000             nan     0.1000    0.0000
##    100        0.0000             nan     0.1000    0.0000
##    120        0.0000             nan     0.1000    0.0000
##    140        0.0000             nan     0.1000   -0.0000
##    150        0.0000             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    0.9285
##      2        1.5463             nan     0.1000    0.4922
##      3        1.2512             nan     0.1000    0.3297
##      4        1.0531             nan     0.1000    0.2552
##      5        0.9016             nan     0.1000    0.2249
##      6        0.7716             nan     0.1000    0.1582
##      7        0.6735             nan     0.1000    0.1443
##      8        0.5859             nan     0.1000    0.0963
##      9        0.5221             nan     0.1000    0.1080
##     10        0.4555             nan     0.1000    0.0701
##     20        0.1487             nan     0.1000    0.0250
##     40        0.0218             nan     0.1000    0.0022
##     60        0.0045             nan     0.1000    0.0003
##     80        0.0009             nan     0.1000    0.0000
##    100        0.0002             nan     0.1000    0.0000
##    120        0.0001             nan     0.1000    0.0000
##    140        0.0000             nan     0.1000   -0.0000
##    150        0.0000             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    0.9810
##      2        1.4918             nan     0.1000    0.5451
##      3        1.1595             nan     0.1000    0.3880
##      4        0.9281             nan     0.1000    0.3004
##      5        0.7497             nan     0.1000    0.1869
##      6        0.6308             nan     0.1000    0.1745
##      7        0.5266             nan     0.1000    0.1423
##      8        0.4415             nan     0.1000    0.1053
##      9        0.3763             nan     0.1000    0.0870
##     10        0.3182             nan     0.1000    0.0730
##     20        0.0697             nan     0.1000    0.0097
##     40        0.0058             nan     0.1000    0.0006
##     60        0.0006             nan     0.1000    0.0000
##     80        0.0001             nan     0.1000    0.0000
##    100        0.0000             nan     0.1000   -0.0000
##    120        0.0000             nan     0.1000   -0.0000
##    140        0.0000             nan     0.1000    0.0000
##    150        0.0000             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    1.0729
##      2        1.4424             nan     0.1000    0.4586
##      3        1.1551             nan     0.1000    0.3646
##      4        0.9224             nan     0.1000    0.2594
##      5        0.7602             nan     0.1000    0.1962
##      6        0.6346             nan     0.1000    0.1670
##      7        0.5337             nan     0.1000    0.1364
##      8        0.4504             nan     0.1000    0.0956
##      9        0.3878             nan     0.1000    0.0954
##     10        0.3290             nan     0.1000    0.0835
##     20        0.0698             nan     0.1000    0.0132
##     40        0.0044             nan     0.1000    0.0006
##     60        0.0004             nan     0.1000    0.0001
##     80        0.0001             nan     0.1000    0.0000
##    100        0.0000             nan     0.1000    0.0000
##    120        0.0000             nan     0.1000   -0.0000
##    140        0.0000             nan     0.1000    0.0000
##    150        0.0000             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    0.8437
##      2        1.5558             nan     0.1000    0.4971
##      3        1.2656             nan     0.1000    0.3680
##      4        1.0491             nan     0.1000    0.2528
##      5        0.8992             nan     0.1000    0.2173
##      6        0.7734             nan     0.1000    0.1657
##      7        0.6744             nan     0.1000    0.1455
##      8        0.5880             nan     0.1000    0.0938
##      9        0.5262             nan     0.1000    0.1037
##     10        0.4632             nan     0.1000    0.0815
##     20        0.1499             nan     0.1000    0.0261
##     40        0.0228             nan     0.1000    0.0013
##     60        0.0046             nan     0.1000    0.0002
##     80        0.0011             nan     0.1000    0.0000
##    100        0.0003             nan     0.1000    0.0000
##    120        0.0001             nan     0.1000    0.0000
##    140        0.0000             nan     0.1000    0.0000
##    150        0.0000             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    1.0516
##      2        1.4564             nan     0.1000    0.5423
##      3        1.1394             nan     0.1000    0.3966
##      4        0.9090             nan     0.1000    0.2606
##      5        0.7509             nan     0.1000    0.1990
##      6        0.6296             nan     0.1000    0.1767
##      7        0.5230             nan     0.1000    0.1293
##      8        0.4419             nan     0.1000    0.1103
##      9        0.3748             nan     0.1000    0.0958
##     10        0.3186             nan     0.1000    0.0803
##     20        0.0669             nan     0.1000    0.0087
##     40        0.0047             nan     0.1000    0.0006
##     60        0.0005             nan     0.1000    0.0001
##     80        0.0001             nan     0.1000   -0.0000
##    100        0.0000             nan     0.1000   -0.0000
##    120        0.0000             nan     0.1000   -0.0000
##    140        0.0000             nan     0.1000   -0.0000
##    150        0.0000             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    1.0335
##      2        1.4669             nan     0.1000    0.5477
##      3        1.1488             nan     0.1000    0.3488
##      4        0.9448             nan     0.1000    0.2710
##      5        0.7722             nan     0.1000    0.2155
##      6        0.6426             nan     0.1000    0.1796
##      7        0.5344             nan     0.1000    0.1352
##      8        0.4515             nan     0.1000    0.0962
##      9        0.3910             nan     0.1000    0.1039
##     10        0.3261             nan     0.1000    0.0778
##     20        0.0739             nan     0.1000    0.0150
##     40        0.0039             nan     0.1000    0.0000
##     60        0.0003             nan     0.1000   -0.0001
##     80        0.0001             nan     0.1000   -0.0000
##    100        0.0000             nan     0.1000   -0.0000
##    120        0.0000             nan     0.1000    0.0000
##    140        0.0000             nan     0.1000    0.0000
##    150        0.0000             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.0794             nan     0.1000    1.0651
##      2        1.4266             nan     0.1000    0.5564
##      3        1.0923             nan     0.1000    0.3421
##      4        0.8835             nan     0.1000    0.2898
##      5        0.7100             nan     0.1000    0.2128
##      6        0.5822             nan     0.1000    0.1566
##      7        0.4884             nan     0.1000    0.1290
##      8        0.4077             nan     0.1000    0.1063
##      9        0.3409             nan     0.1000    0.0875
##     10        0.2865             nan     0.1000    0.0723
##     20        0.0548             nan     0.1000    0.0104
##     40        0.0039             nan     0.1000    0.0004
##     60        0.0007             nan     0.1000    0.0000
##     80        0.0003             nan     0.1000   -0.0002
##    100        0.0001             nan     0.1000    0.0000
##    120        0.0000             nan     0.1000   -0.0000
##    140        0.0000             nan     0.1000    0.0000
##    150        0.0000             nan     0.1000   -0.0000
## 
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 491.379180 
## final  value 216.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 421.982261 
## final  value 199.333333 
## converged
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 456.366755 
## final  value 216.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 456.423561 
## final  value 216.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 422.357115 
## final  value 216.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 436.639548 
## iter  10 value 215.987768
## iter  20 value 215.980928
## iter  30 value 215.957685
## iter  40 value 200.325043
## final  value 199.333340 
## converged
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 401.782638 
## final  value 216.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 349.203726 
## final  value 216.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 403.742790 
## final  value 215.999855 
## converged
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 392.071533 
## final  value 216.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 411.645833 
## final  value 216.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 472.945235 
## final  value 216.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 533.236959 
## final  value 216.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 588.349718 
## final  value 216.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 607.950705 
## final  value 216.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 523.341840 
## iter  10 value 198.618606
## iter  20 value 184.696608
## iter  30 value 177.798786
## iter  40 value 166.289731
## iter  50 value 161.069878
## iter  60 value 159.689107
## iter  70 value 157.961787
## iter  80 value 155.642009
## iter  90 value 154.623812
## iter 100 value 154.605562
## final  value 154.605562 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 361.940820 
## iter  10 value 202.160612
## iter  20 value 164.711021
## iter  30 value 160.203470
## iter  40 value 158.822160
## iter  50 value 158.331707
## iter  60 value 156.049495
## iter  70 value 154.733557
## iter  80 value 154.605431
## final  value 154.605425 
## converged
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 477.842374 
## iter  10 value 197.746044
## iter  20 value 184.586212
## iter  30 value 169.592675
## iter  40 value 159.415141
## iter  50 value 152.453741
## iter  60 value 151.187776
## iter  70 value 150.837281
## iter  80 value 150.509155
## final  value 150.508121 
## converged
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 499.121314 
## iter  10 value 208.686185
## iter  20 value 187.047272
## iter  30 value 184.272435
## iter  40 value 183.114191
## iter  50 value 182.802774
## iter  60 value 164.680016
## iter  70 value 163.543326
## iter  80 value 161.296862
## iter  90 value 160.381384
## iter 100 value 157.524651
## final  value 157.524651 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 464.021546 
## iter  10 value 197.307274
## iter  20 value 166.769242
## iter  30 value 153.476880
## iter  40 value 152.144284
## iter  50 value 151.025154
## iter  60 value 150.615986
## iter  70 value 150.508127
## final  value 150.508121 
## converged
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 552.189958 
## iter  10 value 200.330284
## iter  20 value 184.725359
## iter  30 value 163.604835
## iter  40 value 139.325509
## iter  50 value 129.592472
## iter  60 value 123.022881
## iter  70 value 103.926631
## iter  80 value 88.834836
## iter  90 value 85.874287
## iter 100 value 84.641185
## final  value 84.641185 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 484.519444 
## iter  10 value 201.484898
## iter  20 value 191.080657
## iter  30 value 161.961364
## iter  40 value 149.350319
## iter  50 value 139.569982
## iter  60 value 134.233287
## iter  70 value 128.353305
## iter  80 value 126.610686
## iter  90 value 118.296888
## iter 100 value 98.532692
## final  value 98.532692 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 453.091998 
## iter  10 value 243.841222
## iter  20 value 186.007298
## iter  30 value 182.905337
## iter  40 value 182.105135
## iter  50 value 154.118654
## iter  60 value 138.137092
## iter  70 value 134.532585
## iter  80 value 119.616232
## iter  90 value 81.245923
## iter 100 value 73.500829
## final  value 73.500829 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 537.431089 
## iter  10 value 207.727503
## iter  20 value 184.209459
## iter  30 value 177.121005
## iter  40 value 163.807125
## iter  50 value 161.533521
## iter  60 value 159.827017
## iter  70 value 159.438895
## iter  80 value 158.204561
## iter  90 value 151.326823
## iter 100 value 123.383334
## final  value 123.383334 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 459.124814 
## iter  10 value 215.443813
## iter  20 value 183.667866
## iter  30 value 154.461012
## iter  40 value 151.454521
## iter  50 value 136.317315
## iter  60 value 133.836887
## iter  70 value 127.232597
## iter  80 value 108.893726
## iter  90 value 96.767792
## iter 100 value 93.862809
## final  value 93.862809 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 474.124899 
## iter  10 value 198.477743
## iter  20 value 184.542051
## iter  30 value 165.960111
## iter  40 value 159.077877
## iter  50 value 132.409953
## iter  60 value 120.661287
## iter  70 value 75.441274
## iter  80 value 63.915736
## iter  90 value 57.194501
## iter 100 value 47.292030
## final  value 47.292030 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 478.448877 
## iter  10 value 193.396873
## iter  20 value 182.643569
## iter  30 value 162.840849
## iter  40 value 152.240972
## iter  50 value 122.116541
## iter  60 value 114.216135
## iter  70 value 82.103484
## iter  80 value 69.461660
## iter  90 value 63.835080
## iter 100 value 61.393857
## final  value 61.393857 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 430.554224 
## iter  10 value 200.184882
## iter  20 value 190.772428
## iter  30 value 142.579522
## iter  40 value 121.644070
## iter  50 value 112.563383
## iter  60 value 102.749058
## iter  70 value 101.034383
## iter  80 value 98.383153
## iter  90 value 71.380027
## iter 100 value 62.508533
## final  value 62.508533 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 492.057406 
## iter  10 value 242.208777
## iter  20 value 186.139339
## iter  30 value 159.592822
## iter  40 value 155.944018
## iter  50 value 136.848839
## iter  60 value 113.524401
## iter  70 value 91.443243
## iter  80 value 78.100914
## iter  90 value 75.833309
## iter 100 value 59.417352
## final  value 59.417352 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 540.098691 
## iter  10 value 198.717331
## iter  20 value 186.882676
## iter  30 value 165.349410
## iter  40 value 147.540433
## iter  50 value 112.993530
## iter  60 value 103.970846
## iter  70 value 80.902582
## iter  80 value 67.338727
## iter  90 value 61.240491
## iter 100 value 43.267673
## final  value 43.267673 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 434.171219 
## iter  10 value 216.121759
## iter  20 value 215.947508
## iter  30 value 211.708133
## iter  40 value 208.330374
## iter  50 value 208.303836
## iter  60 value 205.187741
## iter  70 value 205.070602
## iter  80 value 188.569218
## iter  90 value 188.469595
## iter 100 value 188.369578
## final  value 188.369578 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 434.817848 
## iter  10 value 216.134828
## iter  20 value 216.133286
## iter  30 value 216.131585
## iter  40 value 216.129675
## iter  50 value 216.127481
## iter  60 value 216.124887
## iter  70 value 216.121697
## iter  80 value 216.117533
## iter  90 value 194.821985
## iter 100 value 190.423091
## final  value 190.423091 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 502.675885 
## iter  10 value 218.389424
## iter  20 value 218.372792
## iter  30 value 218.350800
## iter  40 value 218.313038
## iter  50 value 218.178267
## iter  60 value 213.903366
## iter  70 value 194.860696
## iter  80 value 190.986829
## iter  90 value 189.905470
## iter 100 value 186.619095
## final  value 186.619095 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 460.985310 
## iter  10 value 216.129172
## iter  20 value 216.126436
## iter  30 value 216.123096
## iter  40 value 216.118816
## iter  50 value 216.112947
## iter  60 value 216.104042
## iter  70 value 216.088099
## iter  80 value 216.048516
## iter  90 value 215.753004
## iter 100 value 199.458531
## final  value 199.458531 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 517.719653 
## iter  10 value 200.249263
## iter  20 value 199.614838
## iter  30 value 188.364764
## iter  40 value 181.410813
## iter  50 value 181.066288
## iter  60 value 181.050363
## iter  70 value 174.731453
## iter  80 value 164.408114
## iter  90 value 163.998442
## iter 100 value 163.982782
## final  value 163.982782 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 413.753541 
## iter  10 value 216.089259
## iter  20 value 184.998252
## iter  30 value 148.319886
## iter  40 value 142.283798
## iter  50 value 141.813845
## iter  60 value 141.733477
## iter  70 value 141.691629
## iter  80 value 141.604762
## iter  90 value 141.513550
## iter 100 value 141.117896
## final  value 141.117896 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 517.333396 
## iter  10 value 217.357947
## iter  20 value 217.351423
## iter  30 value 217.344577
## iter  40 value 217.337201
## iter  50 value 217.328877
## iter  60 value 217.318613
## iter  70 value 217.303350
## iter  80 value 217.266942
## iter  90 value 215.072513
## iter 100 value 200.156011
## final  value 200.156011 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 539.779102 
## iter  10 value 214.688814
## iter  20 value 182.611550
## iter  30 value 181.219858
## iter  40 value 181.078033
## iter  50 value 180.972617
## iter  60 value 179.255547
## iter  70 value 153.816135
## iter  80 value 146.617318
## iter  90 value 146.249378
## iter 100 value 146.217557
## final  value 146.217557 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 572.683608 
## iter  10 value 213.325241
## iter  20 value 188.376562
## iter  30 value 179.144697
## iter  40 value 166.154225
## iter  50 value 158.015034
## iter  60 value 155.524083
## iter  70 value 155.273860
## iter  80 value 155.119497
## iter  90 value 152.990523
## iter 100 value 151.571674
## final  value 151.571674 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 514.346568 
## iter  10 value 218.862734
## iter  20 value 218.841704
## iter  30 value 218.811246
## iter  40 value 218.742486
## iter  50 value 216.876457
## iter  60 value 201.886429
## iter  70 value 198.766231
## iter  80 value 165.585049
## iter  90 value 157.651173
## iter 100 value 148.382857
## final  value 148.382857 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 466.510748 
## iter  10 value 216.169710
## iter  20 value 199.577355
## iter  30 value 179.082337
## iter  40 value 177.198327
## iter  50 value 176.685823
## iter  60 value 176.255087
## iter  70 value 176.234583
## iter  80 value 167.623184
## iter  90 value 162.043949
## iter 100 value 144.049341
## final  value 144.049341 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 562.063696 
## iter  10 value 337.586386
## iter  20 value 332.604956
## iter  30 value 326.656901
## iter  40 value 269.517403
## iter  50 value 183.581575
## iter  60 value 181.272899
## iter  70 value 167.589891
## iter  80 value 150.977647
## iter  90 value 147.289530
## iter 100 value 143.718075
## final  value 143.718075 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 433.477786 
## iter  10 value 216.442997
## iter  20 value 215.031669
## iter  30 value 211.925557
## iter  40 value 211.557437
## iter  50 value 194.838035
## iter  60 value 188.945866
## iter  70 value 187.485081
## iter  80 value 182.998999
## iter  90 value 181.136654
## iter 100 value 171.282003
## final  value 171.282003 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 465.838841 
## iter  10 value 214.412677
## iter  20 value 212.652785
## iter  30 value 181.658035
## iter  40 value 177.484421
## iter  50 value 177.470955
## iter  60 value 174.048179
## iter  70 value 172.478479
## iter  80 value 172.269843
## iter  90 value 168.081241
## iter 100 value 167.494026
## final  value 167.494026 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 472.412088 
## iter  10 value 216.234766
## iter  20 value 212.728920
## iter  30 value 211.622933
## iter  40 value 208.687237
## iter  50 value 208.438428
## iter  60 value 192.376779
## iter  70 value 191.823878
## iter  80 value 187.562231
## iter  90 value 184.271855
## iter 100 value 184.109431
## final  value 184.109431 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 498.672637 
## final  value 214.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 466.034435 
## final  value 214.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 485.354517 
## final  value 213.999810 
## converged
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 462.464199 
## final  value 214.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 427.455995 
## final  value 214.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 367.020721 
## final  value 214.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 315.919018 
## final  value 214.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 421.787361 
## final  value 213.999981 
## converged
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 559.735676 
## iter  10 value 193.546123
## iter  20 value 193.523631
## final  value 193.523531 
## converged
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 459.981977 
## final  value 214.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 448.264437 
## final  value 214.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 455.238635 
## final  value 214.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 547.050849 
## final  value 197.733645 
## converged
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 388.702381 
## final  value 214.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 493.682056 
## final  value 214.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 392.084102 
## iter  10 value 186.080646
## iter  20 value 181.412502
## iter  30 value 181.408386
## iter  40 value 178.713410
## iter  50 value 168.640233
## iter  60 value 162.694633
## iter  70 value 158.896295
## iter  80 value 156.330797
## iter  90 value 151.124381
## iter 100 value 148.714022
## final  value 148.714022 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 505.303583 
## iter  10 value 185.367333
## iter  20 value 182.883629
## iter  30 value 172.769850
## iter  40 value 165.114989
## iter  50 value 161.342308
## iter  60 value 149.529803
## iter  70 value 148.286214
## iter  80 value 148.216886
## final  value 148.216878 
## converged
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 463.541749 
## iter  10 value 185.705924
## iter  20 value 183.022788
## iter  30 value 157.407582
## iter  40 value 152.312754
## iter  50 value 149.357714
## iter  60 value 148.827987
## iter  70 value 148.097110
## iter  80 value 144.400110
## iter  90 value 142.878465
## iter 100 value 142.717007
## final  value 142.717007 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 368.317011 
## iter  10 value 187.605312
## iter  20 value 182.469870
## iter  30 value 158.782844
## iter  40 value 157.010592
## iter  50 value 156.132485
## iter  60 value 154.760335
## iter  70 value 151.028994
## iter  80 value 150.028683
## iter  90 value 149.732395
## final  value 149.730935 
## converged
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 560.336753 
## iter  10 value 184.490794
## iter  20 value 181.412315
## iter  30 value 181.341737
## iter  40 value 176.979750
## iter  50 value 164.876352
## iter  60 value 160.485735
## iter  70 value 159.526019
## iter  80 value 156.328656
## iter  90 value 149.671576
## iter 100 value 148.038276
## final  value 148.038276 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 606.108512 
## iter  10 value 229.919739
## iter  20 value 181.830794
## iter  30 value 173.469764
## iter  40 value 160.476907
## iter  50 value 159.510091
## iter  60 value 154.741457
## iter  70 value 124.102931
## iter  80 value 99.619379
## iter  90 value 94.784895
## iter 100 value 92.600998
## final  value 92.600998 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 534.948905 
## iter  10 value 181.077352
## iter  20 value 174.091547
## iter  30 value 162.115747
## iter  40 value 150.398081
## iter  50 value 148.383468
## iter  60 value 119.377322
## iter  70 value 103.907554
## iter  80 value 100.083298
## iter  90 value 96.910419
## iter 100 value 93.825673
## final  value 93.825673 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 502.559502 
## iter  10 value 212.119152
## iter  20 value 182.300373
## iter  30 value 174.457478
## iter  40 value 149.664618
## iter  50 value 139.013221
## iter  60 value 130.711891
## iter  70 value 127.599556
## iter  80 value 109.562502
## iter  90 value 82.217761
## iter 100 value 74.698712
## final  value 74.698712 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 444.123999 
## iter  10 value 184.394804
## iter  20 value 152.459193
## iter  30 value 149.343708
## iter  40 value 147.669160
## iter  50 value 146.953840
## iter  60 value 144.785102
## iter  70 value 134.809074
## iter  80 value 107.433969
## iter  90 value 88.988688
## iter 100 value 85.105677
## final  value 85.105677 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 462.609401 
## iter  10 value 223.054853
## iter  20 value 191.757963
## iter  30 value 142.600726
## iter  40 value 120.243774
## iter  50 value 106.625559
## iter  60 value 100.721404
## iter  70 value 100.432604
## iter  80 value 98.311424
## iter  90 value 82.427525
## iter 100 value 76.068941
## final  value 76.068941 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 440.903538 
## iter  10 value 207.793178
## iter  20 value 169.557237
## iter  30 value 160.265534
## iter  40 value 138.048440
## iter  50 value 131.458885
## iter  60 value 120.898293
## iter  70 value 118.196882
## iter  80 value 117.170748
## iter  90 value 106.757399
## iter 100 value 87.222356
## final  value 87.222356 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 544.669346 
## iter  10 value 212.779113
## iter  20 value 184.396545
## iter  30 value 174.449504
## iter  40 value 152.831713
## iter  50 value 113.307211
## iter  60 value 85.196879
## iter  70 value 77.495807
## iter  80 value 67.288566
## iter  90 value 63.442443
## iter 100 value 61.631290
## final  value 61.631290 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 516.735343 
## iter  10 value 249.030933
## iter  20 value 192.870314
## iter  30 value 147.353331
## iter  40 value 129.766626
## iter  50 value 105.491534
## iter  60 value 80.668439
## iter  70 value 76.005571
## iter  80 value 67.378644
## iter  90 value 66.479401
## iter 100 value 65.075169
## final  value 65.075169 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 574.190474 
## iter  10 value 204.714678
## iter  20 value 202.575637
## iter  30 value 186.188007
## iter  40 value 158.861980
## iter  50 value 142.040176
## iter  60 value 127.246628
## iter  70 value 115.144950
## iter  80 value 109.262877
## iter  90 value 103.531924
## iter 100 value 102.683929
## final  value 102.683929 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 505.500490 
## iter  10 value 234.973606
## iter  20 value 183.045314
## iter  30 value 174.157764
## iter  40 value 164.450747
## iter  50 value 157.051611
## iter  60 value 130.940057
## iter  70 value 98.755586
## iter  80 value 79.673223
## iter  90 value 74.626483
## iter 100 value 53.922419
## final  value 53.922419 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 438.578930 
## iter  10 value 201.922004
## iter  20 value 193.399572
## iter  30 value 173.699679
## iter  40 value 163.262393
## iter  50 value 157.221363
## iter  60 value 139.783621
## iter  70 value 130.916688
## iter  80 value 127.199658
## iter  90 value 122.562485
## iter 100 value 122.251234
## final  value 122.251234 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 512.988984 
## iter  10 value 214.739738
## iter  20 value 211.998528
## iter  30 value 211.305762
## iter  40 value 197.792033
## iter  50 value 186.146056
## iter  60 value 184.663450
## iter  70 value 183.321865
## iter  80 value 181.574192
## iter  90 value 179.911908
## iter 100 value 179.870062
## final  value 179.870062 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 349.856580 
## iter  10 value 214.020766
## iter  20 value 209.910579
## iter  30 value 209.888629
## iter  40 value 209.880575
## iter  50 value 209.860176
## iter  60 value 209.691032
## iter  70 value 194.940680
## iter  80 value 193.625421
## iter  90 value 193.431318
## iter 100 value 192.087359
## final  value 192.087359 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 435.870824 
## iter  10 value 214.584512
## iter  20 value 198.578786
## iter  30 value 197.131009
## iter  40 value 193.627358
## iter  50 value 190.980626
## iter  60 value 186.078469
## iter  70 value 185.686467
## iter  80 value 184.436863
## iter  90 value 182.856302
## iter 100 value 182.593855
## final  value 182.593855 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 598.701322 
## iter  10 value 214.107232
## iter  20 value 214.104079
## iter  30 value 214.100033
## iter  40 value 214.094490
## iter  50 value 214.086122
## iter  60 value 214.071350
## iter  70 value 214.036113
## iter  80 value 213.824706
## iter  90 value 197.840712
## iter 100 value 194.743384
## final  value 194.743384 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 379.180273 
## iter  10 value 201.629985
## iter  20 value 192.079961
## iter  30 value 172.034025
## iter  40 value 171.669282
## iter  50 value 171.101883
## iter  60 value 171.070094
## iter  70 value 171.030726
## iter  80 value 167.030427
## iter  90 value 165.948068
## iter 100 value 165.927572
## final  value 165.927572 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 506.516214 
## iter  10 value 214.174722
## iter  20 value 214.140844
## iter  30 value 209.779007
## iter  40 value 209.571597
## iter  50 value 207.887474
## iter  60 value 192.293901
## iter  70 value 191.597756
## iter  80 value 191.583671
## iter  90 value 191.365799
## iter 100 value 187.825850
## final  value 187.825850 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 404.382748 
## iter  10 value 213.919769
## iter  20 value 195.523766
## iter  30 value 180.013304
## iter  40 value 174.549370
## iter  50 value 173.168990
## iter  60 value 173.041259
## iter  70 value 172.873580
## iter  80 value 172.513674
## iter  90 value 172.114870
## iter 100 value 170.560693
## final  value 170.560693 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 529.032720 
## iter  10 value 213.618483
## iter  20 value 209.964184
## iter  30 value 179.671771
## final  value 179.590237 
## converged
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 489.331434 
## iter  10 value 216.767400
## iter  20 value 200.543314
## iter  30 value 195.937122
## iter  40 value 189.130686
## iter  50 value 185.410933
## iter  60 value 162.932388
## iter  70 value 159.536296
## iter  80 value 153.639628
## iter  90 value 148.280102
## iter 100 value 146.831265
## final  value 146.831265 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 396.474570 
## iter  10 value 212.983320
## iter  20 value 199.787755
## iter  30 value 196.460641
## iter  40 value 193.211079
## iter  50 value 185.451316
## iter  60 value 176.304256
## iter  70 value 173.626389
## iter  80 value 158.947722
## iter  90 value 154.905332
## iter 100 value 154.865031
## final  value 154.865031 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 501.362229 
## iter  10 value 214.190207
## iter  20 value 213.340755
## iter  30 value 213.274765
## iter  40 value 213.243090
## iter  50 value 212.368854
## iter  60 value 211.041898
## iter  70 value 211.002095
## iter  80 value 209.353119
## iter  90 value 197.287566
## iter 100 value 181.610697
## final  value 181.610697 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 727.939670 
## iter  10 value 214.393046
## iter  20 value 181.935451
## iter  30 value 179.675921
## iter  40 value 179.614440
## iter  50 value 154.297115
## iter  60 value 100.119997
## iter  70 value 89.709856
## iter  80 value 79.128730
## iter  90 value 71.659519
## iter 100 value 71.130234
## final  value 71.130234 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 428.712804 
## iter  10 value 220.293288
## iter  20 value 220.266954
## iter  30 value 220.240182
## iter  40 value 220.212473
## iter  50 value 220.182433
## iter  60 value 220.144142
## iter  70 value 220.003791
## iter  80 value 203.778225
## iter  90 value 195.454399
## iter 100 value 194.933742
## final  value 194.933742 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 474.379367 
## iter  10 value 193.932456
## iter  20 value 179.731981
## iter  30 value 179.632883
## iter  40 value 179.599131
## iter  50 value 149.737269
## iter  60 value 143.211993
## iter  70 value 142.324811
## iter  80 value 139.582891
## iter  90 value 138.022834
## iter 100 value 135.089575
## final  value 135.089575 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 385.825735 
## final  value 216.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 381.652163 
## final  value 216.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 411.125861 
## final  value 216.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 462.780248 
## final  value 216.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 433.247785 
## final  value 216.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 463.634618 
## final  value 216.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 507.855296 
## final  value 216.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 578.829927 
## final  value 216.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 604.225912 
## final  value 216.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 365.419714 
## iter  10 value 199.884259
## iter  10 value 199.884259
## iter  10 value 199.884259
## final  value 199.884259 
## converged
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 410.240162 
## final  value 215.999975 
## converged
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 403.836326 
## iter  10 value 215.991507
## iter  20 value 215.990723
## iter  30 value 215.989780
## iter  40 value 215.988624
## iter  50 value 215.987174
## iter  60 value 215.985303
## iter  70 value 215.982797
## iter  80 value 215.979266
## iter  90 value 215.973928
## iter 100 value 215.964932
## final  value 215.964932 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 441.870318 
## final  value 216.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 449.308696 
## final  value 216.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 441.919302 
## final  value 215.999956 
## converged
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 466.512392 
## iter  10 value 208.630569
## iter  20 value 184.752321
## iter  30 value 168.775896
## iter  40 value 164.837045
## iter  50 value 160.210138
## iter  60 value 157.942053
## iter  70 value 156.969747
## iter  80 value 155.463702
## iter  90 value 154.242528
## final  value 154.240762 
## converged
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 522.268593 
## iter  10 value 200.625331
## iter  20 value 184.906499
## iter  30 value 182.246646
## iter  40 value 168.747043
## iter  50 value 166.654816
## iter  60 value 163.986476
## iter  70 value 163.033225
## iter  80 value 161.205933
## iter  90 value 158.368710
## iter 100 value 150.045072
## final  value 150.045072 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 433.231822 
## iter  10 value 193.099442
## iter  20 value 183.190211
## iter  30 value 183.169988
## iter  40 value 183.007497
## iter  50 value 169.848167
## iter  60 value 165.294319
## iter  70 value 164.816162
## iter  80 value 158.992003
## iter  90 value 149.803534
## iter 100 value 149.418029
## final  value 149.418029 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 485.984654 
## iter  10 value 191.448720
## iter  20 value 184.843456
## iter  30 value 181.388933
## iter  40 value 173.123904
## iter  50 value 168.167594
## iter  60 value 167.685515
## iter  70 value 166.608305
## iter  80 value 166.163310
## iter  90 value 165.867600
## iter 100 value 162.911548
## final  value 162.911548 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 437.913047 
## iter  10 value 194.728000
## iter  20 value 185.464602
## iter  30 value 185.021811
## iter  40 value 184.723211
## iter  50 value 170.568707
## iter  60 value 165.497504
## iter  70 value 161.562371
## iter  80 value 158.772719
## iter  90 value 153.723074
## iter 100 value 151.180876
## final  value 151.180876 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 391.023861 
## iter  10 value 202.586913
## iter  20 value 169.711362
## iter  30 value 157.473634
## iter  40 value 144.317308
## iter  50 value 138.890785
## iter  60 value 134.252960
## iter  70 value 98.378823
## iter  80 value 91.543960
## iter  90 value 90.803019
## iter 100 value 89.600502
## final  value 89.600502 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 437.567626 
## iter  10 value 204.807126
## iter  20 value 167.261516
## iter  30 value 161.717513
## iter  40 value 158.950738
## iter  50 value 156.071612
## iter  60 value 138.515127
## iter  70 value 110.267795
## iter  80 value 106.112783
## iter  90 value 103.257779
## iter 100 value 87.679834
## final  value 87.679834 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 521.376415 
## iter  10 value 212.317158
## iter  20 value 185.829659
## iter  30 value 180.795599
## iter  40 value 152.960746
## iter  50 value 148.119403
## iter  60 value 145.152494
## iter  70 value 140.410991
## iter  80 value 134.853831
## iter  90 value 115.586192
## iter 100 value 97.773190
## final  value 97.773190 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 443.793629 
## iter  10 value 198.045299
## iter  20 value 181.108166
## iter  30 value 157.829345
## iter  40 value 156.380879
## iter  50 value 137.797531
## iter  60 value 127.222635
## iter  70 value 122.564217
## iter  80 value 120.241111
## iter  90 value 119.359432
## iter 100 value 119.154045
## final  value 119.154045 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 422.034305 
## iter  10 value 197.770655
## iter  20 value 171.673581
## iter  30 value 158.328759
## iter  40 value 129.969328
## iter  50 value 120.846432
## iter  60 value 110.054496
## iter  70 value 107.064478
## iter  80 value 104.167143
## iter  90 value 102.953330
## iter 100 value 100.999008
## final  value 100.999008 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 483.420423 
## iter  10 value 212.682319
## iter  20 value 169.640768
## iter  30 value 160.213577
## iter  40 value 155.932068
## iter  50 value 142.545162
## iter  60 value 135.945239
## iter  70 value 128.281587
## iter  80 value 120.178393
## iter  90 value 94.754996
## iter 100 value 70.396982
## final  value 70.396982 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 448.145618 
## iter  10 value 245.126032
## iter  20 value 202.351883
## iter  30 value 183.478989
## iter  40 value 170.947941
## iter  50 value 162.126317
## iter  60 value 119.390290
## iter  70 value 113.774044
## iter  80 value 89.562601
## iter  90 value 77.734372
## iter 100 value 71.102709
## final  value 71.102709 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 462.112315 
## iter  10 value 216.350152
## iter  20 value 185.151012
## iter  30 value 178.211691
## iter  40 value 152.892934
## iter  50 value 139.339641
## iter  60 value 124.011541
## iter  70 value 81.102347
## iter  80 value 63.659145
## iter  90 value 60.537878
## iter 100 value 57.298814
## final  value 57.298814 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 445.691442 
## iter  10 value 296.205635
## iter  20 value 263.906795
## iter  30 value 195.469261
## iter  40 value 182.824951
## iter  50 value 163.180505
## iter  60 value 138.448035
## iter  70 value 110.645389
## iter  80 value 101.352478
## iter  90 value 90.323326
## iter 100 value 73.284346
## final  value 73.284346 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 508.857473 
## iter  10 value 213.734582
## iter  20 value 171.103707
## iter  30 value 161.209946
## iter  40 value 159.004254
## iter  50 value 127.700806
## iter  60 value 104.283941
## iter  70 value 88.629971
## iter  80 value 84.281690
## iter  90 value 75.705693
## iter 100 value 66.093789
## final  value 66.093789 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 489.984910 
## iter  10 value 202.076671
## iter  20 value 181.452013
## iter  30 value 181.379816
## iter  40 value 181.277762
## iter  50 value 158.335670
## iter  60 value 154.007899
## iter  70 value 153.406281
## iter  80 value 153.363633
## iter  90 value 152.310319
## iter 100 value 151.780246
## final  value 151.780246 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 558.035904 
## iter  10 value 216.170576
## iter  20 value 200.423839
## iter  30 value 187.474696
## iter  40 value 182.974498
## iter  50 value 181.532618
## iter  60 value 181.429696
## iter  70 value 181.414179
## iter  80 value 181.331786
## iter  90 value 158.020970
## iter 100 value 156.173993
## final  value 156.173993 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 428.826920 
## iter  10 value 216.084779
## iter  20 value 216.076783
## iter  30 value 216.064364
## iter  40 value 216.040764
## iter  50 value 215.969144
## iter  60 value 211.505038
## iter  70 value 211.225471
## iter  80 value 204.917167
## iter  90 value 198.732821
## iter 100 value 196.312634
## final  value 196.312634 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 429.037504 
## iter  10 value 214.644582
## iter  20 value 199.090045
## iter  30 value 192.119647
## iter  40 value 192.087610
## iter  50 value 190.286136
## iter  60 value 187.643243
## iter  70 value 185.946422
## iter  80 value 181.562209
## iter  90 value 181.374621
## final  value 181.374607 
## converged
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 382.894400 
## iter  10 value 201.646394
## iter  20 value 189.280174
## iter  30 value 186.274777
## iter  40 value 182.433065
## iter  50 value 181.420782
## iter  60 value 181.374228
## iter  60 value 181.374228
## iter  60 value 181.374228
## final  value 181.374228 
## converged
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 521.890855 
## iter  10 value 216.209141
## iter  20 value 213.141824
## iter  30 value 194.165273
## iter  40 value 193.038315
## iter  50 value 168.631535
## iter  60 value 161.309803
## iter  70 value 156.660584
## iter  80 value 156.302141
## iter  90 value 156.290655
## iter 100 value 156.156038
## final  value 156.156038 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 431.863430 
## iter  10 value 216.201551
## iter  20 value 199.990738
## iter  30 value 180.581778
## iter  40 value 179.758769
## iter  50 value 179.049979
## iter  60 value 178.650258
## iter  70 value 177.824785
## iter  80 value 172.805690
## iter  90 value 172.015312
## iter 100 value 171.744666
## final  value 171.744666 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 477.780248 
## iter  10 value 201.118554
## iter  20 value 183.862818
## iter  30 value 181.383292
## iter  40 value 179.712438
## iter  50 value 153.720689
## iter  60 value 151.623904
## iter  70 value 150.418452
## iter  80 value 150.374012
## iter  90 value 149.673904
## iter 100 value 149.487538
## final  value 149.487538 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 586.309164 
## iter  10 value 207.116728
## iter  20 value 200.050842
## iter  30 value 194.128582
## iter  40 value 194.040100
## iter  50 value 192.446264
## iter  60 value 186.235097
## iter  70 value 186.174908
## iter  80 value 183.034284
## iter  90 value 181.613053
## iter 100 value 181.419122
## final  value 181.419122 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 454.345509 
## iter  10 value 216.337607
## iter  20 value 216.142376
## iter  30 value 211.927436
## iter  40 value 181.723974
## iter  50 value 181.262659
## iter  60 value 167.618089
## iter  70 value 162.080047
## iter  80 value 161.992814
## iter  90 value 161.983443
## iter 100 value 161.961475
## final  value 161.961475 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 562.100106 
## iter  10 value 216.318118
## iter  20 value 213.257583
## iter  30 value 197.678430
## iter  40 value 195.566372
## iter  50 value 194.123992
## iter  60 value 189.876921
## iter  70 value 189.293108
## iter  80 value 184.986965
## iter  90 value 184.738418
## iter 100 value 181.690092
## final  value 181.690092 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 396.787705 
## iter  10 value 202.829308
## iter  20 value 198.772537
## iter  30 value 195.330093
## iter  40 value 192.203685
## iter  50 value 190.816392
## iter  60 value 190.771537
## iter  70 value 187.970676
## iter  80 value 187.554549
## iter  90 value 163.674900
## iter 100 value 161.089921
## final  value 161.089921 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 398.042364 
## iter  10 value 214.794187
## iter  20 value 163.946204
## iter  30 value 149.679038
## iter  40 value 115.890340
## iter  50 value 109.180462
## iter  60 value 93.249860
## iter  70 value 87.113256
## iter  80 value 86.933988
## iter  90 value 86.901225
## iter 100 value 86.866890
## final  value 86.866890 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 473.965040 
## iter  10 value 216.182333
## iter  20 value 186.880493
## iter  30 value 153.268929
## iter  40 value 146.066509
## iter  50 value 145.692297
## iter  60 value 145.543687
## iter  70 value 145.513835
## iter  80 value 144.817763
## iter  90 value 144.793983
## iter 100 value 144.791307
## final  value 144.791307 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 480.239685 
## iter  10 value 216.192545
## iter  20 value 195.044229
## iter  30 value 189.947708
## iter  40 value 169.030681
## iter  50 value 167.831109
## iter  60 value 163.521086
## iter  70 value 163.148694
## iter  80 value 162.990339
## iter  90 value 161.698800
## iter 100 value 152.874136
## final  value 152.874136 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 514.756540 
## final  value 216.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 366.170715 
## final  value 215.999631 
## converged
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 402.492999 
## final  value 216.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 460.417460 
## iter  10 value 215.788526
## iter  20 value 199.973192
## final  value 199.884259 
## converged
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 498.043365 
## final  value 215.999894 
## converged
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 640.854931 
## final  value 216.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 473.620671 
## final  value 215.999903 
## converged
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 413.508078 
## final  value 216.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 610.229709 
## final  value 216.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 328.136919 
## final  value 216.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 551.015720 
## final  value 216.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 505.473385 
## final  value 215.999640 
## converged
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 437.975658 
## final  value 216.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 367.451750 
## iter  10 value 313.999011
## iter  20 value 313.998970
## iter  30 value 313.998926
## iter  40 value 313.998878
## iter  50 value 313.998826
## iter  60 value 313.998768
## iter  70 value 313.998704
## iter  80 value 313.998633
## iter  90 value 313.998555
## iter 100 value 313.998466
## final  value 313.998466 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 539.782073 
## final  value 216.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 432.217682 
## iter  10 value 191.342983
## iter  20 value 184.877935
## iter  30 value 184.604176
## iter  40 value 183.889822
## iter  50 value 179.714710
## iter  60 value 165.796962
## iter  70 value 165.290760
## iter  80 value 164.867897
## iter  90 value 158.947698
## iter 100 value 151.930978
## final  value 151.930978 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 344.234673 
## iter  10 value 202.049450
## iter  20 value 185.149420
## iter  30 value 183.209117
## iter  40 value 183.201178
## iter  50 value 183.002809
## iter  60 value 167.320339
## iter  70 value 163.461780
## iter  80 value 161.772551
## iter  90 value 152.936264
## iter 100 value 149.635862
## final  value 149.635862 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 430.525527 
## iter  10 value 189.975574
## iter  20 value 184.072651
## iter  30 value 167.514485
## iter  40 value 162.846275
## iter  50 value 162.477649
## iter  60 value 161.555946
## iter  70 value 158.940133
## iter  80 value 151.943548
## iter  90 value 151.232243
## iter 100 value 151.230811
## final  value 151.230811 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 459.941292 
## iter  10 value 193.001591
## iter  20 value 183.849222
## iter  30 value 167.116841
## iter  40 value 166.018831
## iter  50 value 164.212980
## iter  60 value 163.788780
## iter  70 value 161.275712
## iter  80 value 156.381699
## iter  90 value 151.298050
## iter 100 value 149.713178
## final  value 149.713178 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 523.368505 
## iter  10 value 196.243426
## iter  20 value 184.940546
## iter  30 value 184.877449
## iter  40 value 171.890905
## iter  50 value 167.117108
## iter  60 value 162.364284
## iter  70 value 159.646329
## iter  80 value 150.966096
## iter  90 value 148.977278
## final  value 148.964541 
## converged
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 445.160737 
## iter  10 value 229.385274
## iter  20 value 187.026408
## iter  30 value 173.824459
## iter  40 value 160.733107
## iter  50 value 157.512932
## iter  60 value 156.550402
## iter  70 value 153.638026
## iter  80 value 126.547825
## iter  90 value 121.131189
## iter 100 value 114.828766
## final  value 114.828766 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 399.764140 
## iter  10 value 205.575663
## iter  20 value 183.210243
## iter  30 value 168.740254
## iter  40 value 149.450051
## iter  50 value 139.071316
## iter  60 value 129.690869
## iter  70 value 126.348534
## iter  80 value 123.692959
## iter  90 value 101.927421
## iter 100 value 97.115455
## final  value 97.115455 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 530.482909 
## iter  10 value 203.984011
## iter  20 value 184.272322
## iter  30 value 162.439705
## iter  40 value 147.437982
## iter  50 value 124.264576
## iter  60 value 114.095093
## iter  70 value 100.152099
## iter  80 value 97.762655
## iter  90 value 92.655081
## iter 100 value 79.786052
## final  value 79.786052 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 480.985953 
## iter  10 value 359.889854
## iter  20 value 166.263303
## iter  30 value 161.305424
## iter  40 value 145.149056
## iter  50 value 130.473183
## iter  60 value 127.861890
## iter  70 value 126.564418
## iter  80 value 124.457141
## iter  90 value 112.356188
## iter 100 value 91.573006
## final  value 91.573006 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 449.465503 
## iter  10 value 215.476885
## iter  20 value 182.691594
## iter  30 value 168.267718
## iter  40 value 160.030790
## iter  50 value 135.015177
## iter  60 value 127.987872
## iter  70 value 123.783567
## iter  80 value 103.997382
## iter  90 value 95.672466
## iter 100 value 91.083553
## final  value 91.083553 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 359.937096 
## iter  10 value 236.643843
## iter  20 value 188.590848
## iter  30 value 185.725662
## iter  40 value 167.039677
## iter  50 value 161.261772
## iter  60 value 139.661906
## iter  70 value 100.119644
## iter  80 value 92.141047
## iter  90 value 88.833946
## iter 100 value 84.648895
## final  value 84.648895 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 491.952228 
## iter  10 value 212.942120
## iter  20 value 182.222544
## iter  30 value 159.918438
## iter  40 value 151.314084
## iter  50 value 146.502219
## iter  60 value 121.614256
## iter  70 value 110.942116
## iter  80 value 108.346651
## iter  90 value 96.681773
## iter 100 value 85.134161
## final  value 85.134161 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 469.857931 
## iter  10 value 225.072964
## iter  20 value 171.524015
## iter  30 value 146.120833
## iter  40 value 107.957823
## iter  50 value 90.218276
## iter  60 value 85.244529
## iter  70 value 78.067566
## iter  80 value 65.400965
## iter  90 value 52.477319
## iter 100 value 50.117995
## final  value 50.117995 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 507.636422 
## iter  10 value 203.423079
## iter  20 value 183.259600
## iter  30 value 137.683908
## iter  40 value 132.392190
## iter  50 value 110.568431
## iter  60 value 92.145307
## iter  70 value 75.195331
## iter  80 value 67.340412
## iter  90 value 60.477756
## iter 100 value 46.038419
## final  value 46.038419 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 548.018961 
## iter  10 value 218.938680
## iter  20 value 159.941534
## iter  30 value 152.262494
## iter  40 value 148.324974
## iter  50 value 120.735158
## iter  60 value 107.376417
## iter  70 value 104.096988
## iter  80 value 100.508012
## iter  90 value 99.215247
## iter 100 value 97.152457
## final  value 97.152457 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 475.741419 
## iter  10 value 215.826919
## iter  20 value 199.974439
## iter  30 value 196.630722
## iter  40 value 196.101891
## iter  50 value 195.028574
## iter  60 value 194.918585
## iter  70 value 190.556094
## iter  80 value 189.939138
## iter  90 value 186.047931
## iter 100 value 184.436649
## final  value 184.436649 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 508.324594 
## iter  10 value 215.732519
## iter  20 value 211.185153
## iter  30 value 192.157508
## iter  40 value 191.285120
## iter  50 value 165.721387
## iter  60 value 151.769787
## iter  70 value 150.465345
## iter  80 value 148.959509
## iter  90 value 146.341523
## iter 100 value 144.817171
## final  value 144.817171 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 397.901398 
## iter  10 value 199.980990
## iter  20 value 199.446480
## iter  30 value 198.444791
## iter  40 value 196.778446
## iter  50 value 196.756528
## iter  60 value 193.535051
## iter  70 value 189.108156
## iter  80 value 183.875914
## iter  90 value 181.551699
## iter 100 value 181.542431
## final  value 181.542431 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 495.594389 
## iter  10 value 216.119065
## iter  20 value 216.111376
## iter  30 value 216.099335
## iter  40 value 216.076065
## iter  50 value 216.003485
## iter  60 value 213.251634
## iter  70 value 211.132240
## iter  80 value 208.731562
## iter  90 value 193.755895
## iter 100 value 192.644352
## final  value 192.644352 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 480.983179 
## iter  10 value 216.312701
## iter  20 value 200.423572
## iter  30 value 194.451496
## iter  40 value 182.654981
## iter  50 value 181.395057
## final  value 181.383894 
## converged
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 363.341438 
## iter  10 value 216.248572
## iter  20 value 216.075879
## iter  30 value 200.122955
## iter  40 value 198.484311
## iter  50 value 179.959866
## iter  60 value 177.294923
## iter  70 value 176.901385
## iter  80 value 176.445086
## iter  90 value 169.085638
## iter 100 value 168.929257
## final  value 168.929257 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 386.379995 
## iter  10 value 216.139519
## iter  20 value 212.602575
## iter  30 value 208.507281
## iter  40 value 208.374390
## iter  50 value 208.299823
## iter  60 value 192.227200
## iter  70 value 191.478767
## iter  80 value 186.048827
## iter  90 value 181.549931
## iter 100 value 181.462233
## final  value 181.462233 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 410.191063 
## iter  10 value 201.202862
## iter  20 value 200.322538
## iter  30 value 181.410529
## final  value 181.381477 
## converged
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 398.332302 
## iter  10 value 216.264900
## iter  20 value 216.177444
## iter  30 value 199.511339
## iter  40 value 180.696511
## iter  50 value 180.021183
## iter  60 value 179.926448
## iter  70 value 174.028327
## iter  80 value 173.854408
## iter  90 value 171.331569
## iter 100 value 161.477210
## final  value 161.477210 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 428.093939 
## iter  10 value 193.917324
## iter  20 value 184.784950
## iter  30 value 182.078224
## iter  40 value 181.389299
## iter  50 value 181.383042
## iter  60 value 181.271862
## iter  70 value 179.052834
## iter  80 value 162.226360
## iter  90 value 157.436189
## iter 100 value 157.222995
## final  value 157.222995 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 418.356411 
## iter  10 value 219.362847
## iter  20 value 219.287511
## iter  30 value 203.239580
## iter  40 value 197.940937
## iter  50 value 187.141267
## iter  60 value 178.007748
## iter  70 value 177.543623
## iter  80 value 172.076559
## iter  90 value 169.929423
## iter 100 value 169.821213
## final  value 169.821213 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 416.536631 
## iter  10 value 215.899674
## iter  20 value 214.968215
## iter  30 value 198.942567
## iter  40 value 198.624614
## iter  50 value 196.762009
## iter  60 value 186.146107
## iter  70 value 163.788666
## iter  80 value 150.702567
## iter  90 value 140.388736
## iter 100 value 137.619654
## final  value 137.619654 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 568.989790 
## iter  10 value 216.934050
## iter  20 value 212.910828
## iter  30 value 187.875329
## iter  40 value 185.701767
## iter  50 value 183.418058
## iter  60 value 182.223128
## iter  70 value 179.663654
## iter  80 value 155.013525
## iter  90 value 152.259371
## iter 100 value 147.026869
## final  value 147.026869 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 452.409435 
## iter  10 value 211.579746
## iter  20 value 208.212994
## iter  30 value 192.272852
## iter  40 value 192.144874
## iter  50 value 191.878326
## iter  60 value 184.007536
## iter  70 value 181.554715
## iter  80 value 181.547415
## iter  90 value 181.511929
## iter 100 value 181.386076
## final  value 181.386076 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 536.249363 
## iter  10 value 217.627336
## iter  20 value 217.619642
## iter  30 value 217.611360
## iter  40 value 217.601782
## iter  50 value 214.156209
## iter  60 value 205.890580
## iter  70 value 205.688262
## iter  80 value 203.817362
## iter  90 value 187.034447
## iter 100 value 182.586935
## final  value 182.586935 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 416.504363 
## final  value 214.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 472.314951 
## iter  10 value 213.988391
## iter  20 value 213.986878
## iter  30 value 213.984914
## iter  40 value 213.982261
## iter  50 value 213.978485
## iter  60 value 213.972685
## iter  70 value 213.962657
## iter  80 value 213.941257
## iter  90 value 213.866000
## iter 100 value 201.569070
## final  value 201.569070 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 514.690019 
## final  value 214.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 475.888566 
## final  value 214.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 390.498130 
## final  value 214.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 347.875317 
## final  value 214.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 421.471569 
## final  value 213.999900 
## converged
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 529.604863 
## iter  10 value 213.829597
## final  value 210.841121 
## converged
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 379.859823 
## final  value 214.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 430.426096 
## final  value 214.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 507.848450 
## final  value 214.000000 
## converged
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 481.323051 
## final  value 214.000000 
## converged
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 471.775915 
## final  value 214.000000 
## converged
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 721.349196 
## final  value 214.000000 
## converged
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 545.475352 
## final  value 214.000000 
## converged
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 462.679780 
## iter  10 value 184.834332
## iter  20 value 173.266378
## iter  30 value 153.752555
## iter  40 value 151.676214
## iter  50 value 151.135453
## iter  60 value 150.668448
## iter  70 value 150.173701
## iter  80 value 149.820592
## iter  90 value 149.770648
## iter 100 value 149.017466
## final  value 149.017466 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 446.261528 
## iter  10 value 201.421823
## iter  20 value 183.485153
## iter  30 value 178.121138
## iter  40 value 159.113261
## iter  50 value 156.842434
## iter  60 value 155.909098
## iter  70 value 155.740970
## iter  80 value 155.615995
## iter  90 value 155.555783
## iter 100 value 154.976504
## final  value 154.976504 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 428.115089 
## iter  10 value 195.617191
## iter  20 value 177.695183
## iter  30 value 150.988999
## iter  40 value 148.598503
## iter  50 value 148.399892
## iter  60 value 148.376877
## iter  70 value 148.240711
## iter  80 value 145.077619
## iter  90 value 142.770792
## iter 100 value 142.557464
## final  value 142.557464 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 477.917560 
## iter  10 value 186.327119
## iter  20 value 182.054696
## iter  30 value 181.425333
## iter  40 value 163.867818
## iter  50 value 157.530989
## iter  60 value 151.998037
## iter  70 value 151.095681
## iter  80 value 149.290976
## iter  90 value 148.663553
## iter 100 value 148.270747
## final  value 148.270747 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 434.112074 
## iter  10 value 190.694900
## iter  20 value 183.594959
## iter  30 value 183.083833
## iter  40 value 181.725909
## iter  50 value 157.454033
## iter  60 value 151.743862
## iter  70 value 150.009762
## iter  80 value 149.260878
## iter  90 value 148.895356
## iter 100 value 148.463782
## final  value 148.463782 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 596.138803 
## iter  10 value 195.652913
## iter  20 value 151.586883
## iter  30 value 136.927945
## iter  40 value 133.025274
## iter  50 value 94.756417
## iter  60 value 85.688904
## iter  70 value 83.700670
## iter  80 value 82.584127
## iter  90 value 81.177671
## iter 100 value 80.139545
## final  value 80.139545 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 449.131931 
## iter  10 value 202.467263
## iter  20 value 183.416676
## iter  30 value 167.926113
## iter  40 value 154.554652
## iter  50 value 150.799255
## iter  60 value 148.345487
## iter  70 value 115.107933
## iter  80 value 106.480172
## iter  90 value 104.146034
## iter 100 value 99.775802
## final  value 99.775802 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 363.970209 
## iter  10 value 207.693969
## iter  20 value 181.689010
## iter  30 value 180.569553
## iter  40 value 173.877915
## iter  50 value 152.239354
## iter  60 value 147.602778
## iter  70 value 147.065992
## iter  80 value 137.159439
## iter  90 value 124.618057
## iter 100 value 112.143081
## final  value 112.143081 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 429.736251 
## iter  10 value 196.397650
## iter  20 value 182.651954
## iter  30 value 165.116279
## iter  40 value 146.580606
## iter  50 value 139.104346
## iter  60 value 134.340957
## iter  70 value 129.859120
## iter  80 value 127.293583
## iter  90 value 125.975820
## iter 100 value 122.451913
## final  value 122.451913 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 490.294755 
## iter  10 value 185.912664
## iter  20 value 174.523155
## iter  30 value 150.966827
## iter  40 value 148.682372
## iter  50 value 147.669791
## iter  60 value 138.725621
## iter  70 value 131.324153
## iter  80 value 124.047778
## iter  90 value 122.849487
## iter 100 value 119.785852
## final  value 119.785852 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 547.729684 
## iter  10 value 195.351929
## iter  20 value 168.356704
## iter  30 value 161.999935
## iter  40 value 149.684476
## iter  50 value 119.512382
## iter  60 value 104.721622
## iter  70 value 95.561834
## iter  80 value 90.478774
## iter  90 value 84.495693
## iter 100 value 74.424804
## final  value 74.424804 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 371.033762 
## iter  10 value 206.049723
## iter  20 value 171.497032
## iter  30 value 156.033140
## iter  40 value 143.608620
## iter  50 value 128.563131
## iter  60 value 99.174950
## iter  70 value 89.224041
## iter  80 value 82.845084
## iter  90 value 66.703969
## iter 100 value 62.362445
## final  value 62.362445 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 455.902902 
## iter  10 value 176.086973
## iter  20 value 162.386875
## iter  30 value 149.528226
## iter  40 value 130.327134
## iter  50 value 125.219433
## iter  60 value 116.019641
## iter  70 value 93.268922
## iter  80 value 75.012409
## iter  90 value 59.651748
## iter 100 value 55.197311
## final  value 55.197311 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 611.383112 
## iter  10 value 208.734332
## iter  20 value 165.861620
## iter  30 value 147.615416
## iter  40 value 116.418854
## iter  50 value 88.112350
## iter  60 value 73.826354
## iter  70 value 69.855062
## iter  80 value 61.880510
## iter  90 value 54.610601
## iter 100 value 47.337552
## final  value 47.337552 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 452.989927 
## iter  10 value 184.409888
## iter  20 value 173.901116
## iter  30 value 165.770984
## iter  40 value 159.787910
## iter  50 value 149.695432
## iter  60 value 113.170743
## iter  70 value 101.446387
## iter  80 value 90.685149
## iter  90 value 86.474493
## iter 100 value 85.540364
## final  value 85.540364 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  33
## initial  value 399.896968 
## iter  10 value 198.381669
## iter  20 value 194.918399
## iter  30 value 193.491676
## iter  40 value 186.972620
## iter  50 value 184.380922
## iter  60 value 183.624954
## iter  70 value 181.241497
## iter  80 value 181.220833
## iter  90 value 181.215960
## iter 100 value 180.200006
## final  value 180.200006 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  33
## initial  value 522.012856 
## iter  10 value 214.272979
## iter  20 value 213.259175
## iter  30 value 209.858098
## iter  40 value 208.747966
## iter  50 value 208.489040
## iter  60 value 192.543606
## iter  70 value 192.018986
## iter  80 value 190.156607
## iter  90 value 187.874372
## iter 100 value 184.364342
## final  value 184.364342 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  33
## initial  value 478.714395 
## iter  10 value 197.764336
## iter  20 value 194.402603
## iter  30 value 190.781341
## iter  40 value 189.640060
## iter  50 value 186.468383
## iter  60 value 184.732271
## iter  70 value 182.213815
## iter  80 value 181.656724
## iter  90 value 180.518707
## iter 100 value 180.363226
## final  value 180.363226 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  33
## initial  value 471.425399 
## iter  10 value 213.924979
## iter  20 value 201.949511
## iter  30 value 192.123641
## iter  40 value 191.576476
## iter  50 value 187.525291
## iter  60 value 185.959447
## iter  70 value 184.368796
## iter  80 value 184.155490
## iter  90 value 180.002713
## iter 100 value 179.672640
## final  value 179.672640 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  33
## initial  value 459.514253 
## iter  10 value 213.792197
## iter  20 value 198.208069
## iter  30 value 193.316770
## iter  40 value 190.156602
## iter  50 value 189.967290
## iter  60 value 187.528946
## iter  70 value 184.131737
## iter  80 value 184.069941
## iter  90 value 181.015519
## iter 100 value 180.922583
## final  value 180.922583 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  83
## initial  value 447.340570 
## iter  10 value 214.307579
## iter  20 value 209.367359
## iter  30 value 198.024232
## iter  40 value 178.697736
## iter  50 value 167.925100
## iter  60 value 163.474438
## iter  70 value 163.379339
## iter  80 value 163.369288
## iter  90 value 163.224933
## iter 100 value 163.043763
## final  value 163.043763 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  83
## initial  value 501.128425 
## iter  10 value 214.140854
## iter  20 value 214.137028
## iter  30 value 214.130597
## iter  40 value 214.115015
## iter  50 value 197.360042
## iter  60 value 193.420147
## iter  70 value 192.363257
## iter  80 value 151.199757
## iter  90 value 141.672227
## iter 100 value 140.977624
## final  value 140.977624 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  83
## initial  value 555.236710 
## iter  10 value 214.211319
## iter  20 value 197.977089
## iter  30 value 196.315251
## iter  40 value 193.234336
## iter  50 value 190.717814
## iter  60 value 178.105003
## iter  70 value 177.416945
## iter  80 value 177.138818
## iter  90 value 175.743987
## iter 100 value 172.696154
## final  value 172.696154 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  83
## initial  value 429.850372 
## iter  10 value 191.891506
## iter  20 value 179.725236
## iter  30 value 179.701667
## iter  40 value 165.826787
## iter  50 value 153.850255
## iter  60 value 149.650036
## iter  70 value 149.583107
## iter  80 value 149.514964
## iter  90 value 149.485964
## iter 100 value 149.410652
## final  value 149.410652 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  83
## initial  value 420.731848 
## iter  10 value 214.099765
## iter  20 value 214.085233
## iter  30 value 214.023843
## iter  40 value 197.950550
## iter  50 value 197.755059
## iter  60 value 193.560961
## iter  70 value 193.351256
## iter  80 value 188.881281
## iter  90 value 188.859178
## iter 100 value 187.851794
## final  value 187.851794 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 412.262684 
## iter  10 value 213.529285
## iter  20 value 206.794606
## iter  30 value 206.716352
## iter  40 value 206.672231
## iter  50 value 190.577940
## iter  60 value 190.424512
## iter  70 value 187.948568
## iter  80 value 187.285584
## iter  90 value 187.251861
## iter 100 value 187.241656
## final  value 187.241656 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 533.166165 
## iter  10 value 214.245804
## iter  20 value 205.033883
## iter  30 value 191.680028
## iter  40 value 184.802578
## iter  50 value 182.473372
## iter  60 value 171.197243
## iter  70 value 143.413234
## iter  80 value 139.829801
## iter  90 value 139.602440
## iter 100 value 139.480723
## final  value 139.480723 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 492.969718 
## iter  10 value 214.252861
## iter  20 value 214.115395
## iter  30 value 197.887113
## iter  40 value 197.740358
## iter  50 value 190.735062
## iter  60 value 188.816475
## iter  70 value 181.109755
## iter  80 value 179.658666
## iter  90 value 179.645605
## iter 100 value 179.586897
## final  value 179.586897 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 447.808632 
## iter  10 value 213.445371
## iter  20 value 211.325797
## iter  30 value 202.854383
## iter  40 value 190.065246
## iter  50 value 189.131950
## iter  60 value 188.549801
## iter  70 value 184.396310
## iter  80 value 184.308299
## iter  90 value 180.087190
## iter 100 value 179.864499
## final  value 179.864499 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 363.957074 
## iter  10 value 216.336890
## iter  20 value 213.693077
## iter  30 value 203.538027
## iter  40 value 194.773055
## iter  50 value 193.599721
## iter  60 value 193.088409
## iter  70 value 191.001175
## iter  80 value 187.979782
## iter  90 value 172.384776
## iter 100 value 170.523151
## final  value 170.523151 
## stopped after 100 iterations
## Fitting Repeat 1 
## 
## # weights:  133
## initial  value 525.639378 
## iter  10 value 293.197961
## iter  20 value 225.452151
## iter  30 value 202.569226
## iter  40 value 172.331686
## iter  50 value 140.998711
## iter  60 value 128.637645
## iter  70 value 113.408537
## iter  80 value 106.174795
## iter  90 value 84.297501
## iter 100 value 69.215937
## final  value 69.215937 
## stopped after 100 iterations
## Fitting Repeat 2 
## 
## # weights:  133
## initial  value 703.581902 
## iter  10 value 288.723917
## iter  20 value 214.600747
## iter  30 value 172.773978
## iter  40 value 160.363943
## iter  50 value 157.814939
## iter  60 value 147.907896
## iter  70 value 126.790216
## iter  80 value 112.937847
## iter  90 value 87.772573
## iter 100 value 81.334401
## final  value 81.334401 
## stopped after 100 iterations
## Fitting Repeat 3 
## 
## # weights:  133
## initial  value 698.192378 
## iter  10 value 236.307965
## iter  20 value 220.007504
## iter  30 value 203.160717
## iter  40 value 161.532013
## iter  50 value 125.367528
## iter  60 value 116.355643
## iter  70 value 106.956815
## iter  80 value 95.078530
## iter  90 value 71.534282
## iter 100 value 50.869277
## final  value 50.869277 
## stopped after 100 iterations
## Fitting Repeat 4 
## 
## # weights:  133
## initial  value 827.729449 
## iter  10 value 295.551805
## iter  20 value 280.983187
## iter  30 value 241.293758
## iter  40 value 179.821420
## iter  50 value 167.149346
## iter  60 value 165.676518
## iter  70 value 162.151245
## iter  80 value 146.453329
## iter  90 value 112.602703
## iter 100 value 91.335870
## final  value 91.335870 
## stopped after 100 iterations
## Fitting Repeat 5 
## 
## # weights:  133
## initial  value 706.643053 
## iter  10 value 260.931750
## iter  20 value 230.545918
## iter  30 value 209.222416
## iter  40 value 191.252859
## iter  50 value 186.348680
## iter  60 value 184.196585
## iter  70 value 166.831992
## iter  80 value 160.738414
## iter  90 value 158.602899
## iter 100 value 155.005341
## final  value 155.005341 
## stopped after 100 iterations
prediction_stack <- stack(ensemble)
names(prediction_stack) <- models
plot(prediction_stack)

############### Accuracy assessment - confusion matrices - ####
models <- c("svmPoly", "svmRadial", "svmLinear", "rf", "knn", "gbm", "pls", "mda", "amdai", "avNNet", "Ens_SV", "Ens_WV")
mymodels <- data.frame(matrix (nrow=length(models), ncol= 7))
colnames (mymodels)  <- c("Accuracy", "Kappa", "AccuracyLower", "AccuracyUpper",
                          "AccuracyNull", "AccuracyPValue", "McnemarPValue")
rownames(mymodels) <- models
#empty table for Producer's and user's accuracies
my.acc <- data.frame(matrix (nrow=length(levels(train_2016$class)), ncol= 3))
colnames (my.acc) <- c("PrA", "UrA", "alg")
rownames(my.acc) <- levels(train_2016$class)
myacc <- do.call("rbind", replicate(10, my.acc, simplify = F))
myacc$class <- levels(train_2016$class)
myacc$alg <- rep(models[1:10], each=length(levels(train_2016$class)))
#
uniqueClasses <- unique(train_2016$class)
set.seed(7)
xy_val <- lapply (uniqueClasses, function(class_i){
  class_data <- subset(val_2016, class == class_i)
  classpts <- spsample(class_data, type = "stratified", n = 100)
  classpts$class <-rep(class_i, length(classpts))
  return(classpts)
})
#rbind the spatialpointdataframe into  asingle object
xy_val <- do.call("rbind", xy_val)

models <- c("svmPoly", "svmRadial", "svmLinear", "rf", "knn", "gbm", "pls", "mda", "amdai", "avNNet")

for (mod in models){
  
  #extract predictions
  pred <- extract(prediction_stack[[mod]], xy_val, cellnumbers=T)
  
  #discard duplicates cells and 'cell' column
  dup <- duplicated(pred)
  pred <- pred[!dup,mod]
  obs <- xy_val$class[!dup]
  
  #recode integers for predictions
  uniqueClasses <- sort(uniqueClasses)
  valFactor <- uniqueClasses[pred]
  head(valFactor)
  
  mymodels[rownames(mymodels) %in% mod,] <- confusionMatrix(obs, reference = valFactor)[[3]]
  table <- confusionMatrix(obs, reference = valFactor)[[2]]
  PrA <- diag(table)/rowSums(table)
  UrA <- diag(table)/colSums(table)
  myacc[myacc$alg %in% mod,"PrA"] <- as.vector(PrA)
  myacc[myacc$alg %in% mod,"UrA"] <- as.vector(UrA)
  
}
## validate the ensemble map
#simply voting ensemble procedure
Ensemble <- modal(prediction_stack[[c(1,3,4,5,8,9)]])
names(Ensemble) <- "Ens_SV"
pred <- extract(Ensemble, xy_val, cellnumbers=T)

#discard duplicates cells and 'cell' column
dup <- duplicated(pred)
pred <- pred[!dup,"Ens_SV"]
obs <- xy_val$class[!dup]

#recode integers for predictions
uniqueClasses <- sort(uniqueClasses)
valFactor <- uniqueClasses[pred]
head(valFactor)
## [1] Area Area Area Area Area Area
## 8 Levels: Area Areas queimadas Auga Bosque Carrizal Duna gris ... Vexetacion halofila
mymodels[rownames(mymodels) %in% "Ens_SV",] <-confusionMatrix(obs, reference = valFactor)[[3]]
table <- confusionMatrix(obs, reference = valFactor)[[2]]
PrA <- diag(table)/rowSums(table)
UrA <- diag(table)/colSums(table)
myacc_Ens_SV <- as.data.frame(cbind(PrA, UrA))
myacc_Ens_SV$alg <- "Ens_SV"
myacc_Ens_SV$class <- rownames(myacc_Ens_SV)

####save results

##weithed voting ensemnble procedure
Ensemble2 <- modal(stack(replicate(mymodels[rownames(mymodels)[1], "Accuracy"]*100, prediction_stack[[1]])),
                   
                   stack(replicate(mymodels[rownames(mymodels)[3], "Accuracy"]*100, prediction_stack[[3]])),
                   stack(replicate(mymodels[rownames(mymodels)[4], "Accuracy"]*100, prediction_stack[[4]])),
                   stack(replicate(mymodels[rownames(mymodels)[5], "Accuracy"]*100, prediction_stack[[5]])),
                   
                   
                   stack(replicate(mymodels[rownames(mymodels)[8], "Accuracy"]*100, prediction_stack[[8]])),
                   stack(replicate(mymodels[rownames(mymodels)[9], "Accuracy"]*100, prediction_stack[[9]])))
names(Ensemble2) <- "Ens_Wv"
pred <- extract(Ensemble2, xy_val, cellnumbers=T)
#discard duplicates cells and 'cell' column
dup <- duplicated(pred)
pred <- pred[!dup,"Ens_Wv"]
obs <- xy_val$class[!dup]

#recode integers for predictions
uniqueClasses <- sort(uniqueClasses)
valFactor <- uniqueClasses[pred]
head(valFactor)
## [1] Area Area Area Area Area Area
## 8 Levels: Area Areas queimadas Auga Bosque Carrizal Duna gris ... Vexetacion halofila
mymodels[rownames(mymodels) %in% "Ens_WV",] <-confusionMatrix(obs, reference = valFactor)[[3]]
table <- confusionMatrix(obs, reference = valFactor)[[2]]
PrA <- diag(table)/rowSums(table)
UrA <- diag(table)/colSums(table)
myacc_Ens_WV <- as.data.frame(cbind(PrA, UrA))
myacc_Ens_WV$alg <- "Ens_WV"
myacc_Ens_WV$class <- rownames(myacc_Ens_WV)

####
myacc <- rbind(myacc, myacc_Ens_SV, myacc_Ens_WV)

#write.csv2(mymodels, "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/model.metrics2016_rev.csv")
#write.csv2(myacc, "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/acc.metrics2016_rev.csv")
#writeRaster(Ensemble, bylayer = T, suffix = 'names', filename = "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/Ens_SV_2016.tif", datatype = 'INT2S', overwrite=T, options=c("TFW=YES"))
#writeRaster(Ensemble2, filename = "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/Ens_WV_2016.tif", datatype = 'INT2S', overwrite=T, options=c("TFW=YES"))
#writeRaster(prediction_stack, bylayer = T,  suffix = 'names', filename = "E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/Raster/LULCmap_2016.tif", datatype = 'INT2S', overwrite=T, options=c("TFW=YES"))

save.image("E://USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/ImageProcess2016_revision.RData")

##plot results

library(rasterVis)
library(ggplot2)
gplot(Ensemble) + geom_raster(aes(fill = value)) + 
  facet_wrap(~ variable) +
  scale_fill_gradientn(name="Environmental units 2016",colours=c("grey90", "red2","blue3", "darkgreen" ,"yellow", "seagreen4","orange1","yellowgreen"),
                       breaks=c(1,2,3,4,5,6,7,8), na.value = "white", labels=c("Sand",  "Burned areas", "Water", "Forest", "Reeds", "Grey dunes","Meadows and grasslands", "Halophyte vegetation")) +
  theme(plot.margin = unit(c(0.001,0.001,0.001,0.001), "cm"), panel.grid.major = element_line(colour = "grey70", size = 0.2), 
        panel.grid.minor = element_blank(), panel.background = element_rect(fill = "white", colour = "white")) 

gplot(Ensemble2) + geom_raster(aes(fill = value)) + 
  facet_wrap(~ variable) +
  scale_fill_gradientn(name="Environmental units 2013",colours=c("grey90", "blue3", "darkgreen" ,"yellow", "seagreen4","orange1","yellowgreen"),
                       breaks=c(1,2,3,4,5,6,7), na.value = "white", labels=c("Sand", "Water", "Forest", "Reeds", "Grey Dunes","Meadows and grasslands", "Halophyte vegetation")) +
  theme(plot.margin = unit(c(0.001,0.001,0.001,0.001), "cm"), panel.grid.major = element_line(colour = "grey70", size = 0.2), 
        panel.grid.minor = element_blank(), panel.background = element_rect(fill = "white", colour = "white")) 

################################################################################
################ Mc Nemar's chi-squared test between pairs of algorithms #######
################################################################################

library(plyr)
library(reshape2)
library(ggplot2)

models <- c("svmPoly", "svmRadial", "svmLinear", "rf", "knn", "gbm", "pls", "mda", "amdai", "avNNet")

load("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results/ImageProcess2003.RData")
db <- as.data.frame(matrix(nrow=10,ncol=10))
colnames(db) <- models
rownames(db) <- models

options("scipen"=100, digits= 3)
for (i in models){
  for (j in models){
    pred <- extract(prediction_stack[[c(i)]], xy_val, cellnumbers=T)
    dup <- duplicated(pred)
    pred <- pred[!dup,i]
    obs <- xy_val$class[!dup]
    
    #recode integers for predictions
    uniqueClasses <- sort(uniqueClasses)
    alg1 <- uniqueClasses[pred]
    head(alg1)
    
    pred <- extract(prediction_stack[[c(j)]], xy_val, cellnumbers=T)
    dup <- duplicated(pred)
    pred <- pred[!dup, j]
    
    #recode integers for predictions
    uniqueClasses <- sort(uniqueClasses)
    alg2 <- uniqueClasses[pred]
    head(alg2)
    
    tab <- cbind(obs, alg1, alg2)
    m.freq <- count(tab, c("obs","alg1", "alg2"))
    a <- sum(m.freq[m.freq$obs == m.freq$alg1 & m.freq$obs == m.freq$alg2, "freq"])
    b <- sum(m.freq[m.freq$obs == m.freq$alg1 & m.freq$obs != m.freq$alg2, "freq"])
    c <- sum(m.freq[m.freq$obs != m.freq$alg1 & m.freq$obs == m.freq$alg2, "freq"])
    d <- sum(m.freq[m.freq$obs != m.freq$alg1 & m.freq$obs != m.freq$alg2, "freq"])
    cont.tb <- as.table(matrix(c(a,b,c,d), ncol=2, byrow=T))
    db[i,j] <- mcnemar.test(cont.tb)[3]
  }
}  

db[db < 0.01] <- 0.01
db[db < 0.05 & db  > 0.01] <- 0.05
db[db > 0.05 & db < 0.1] <- 0.10
options(digits = 2)

#library(reshape2)
db <- as.matrix(db)
# Note that a correlation matrix has redundant information. We'll use the functions below to set half of it to NA.
get_upper_tri <- function(db){
  db[lower.tri(db)]<- NA
  return(db)
}
upper_tri <- get_upper_tri(db)
upper_tri
##           svmPoly svmRadial svmLinear  rf  knn  gbm  pls  mda amdai avNNet
## svmPoly       NaN         1      0.68   1 0.45 1.00 0.01 0.37  0.68   0.01
## svmRadial      NA       NaN      1.00   1 0.22 0.68 0.01 0.68  1.00   0.01
## svmLinear      NA        NA       NaN   1 0.10 0.25 0.01 1.00  1.00   0.01
## rf             NA        NA        NA NaN 0.22 0.62 0.01 0.62  1.00   0.01
## knn            NA        NA        NA  NA  NaN 0.72 0.01 0.10  0.18   0.10
## gbm            NA        NA        NA  NA   NA  NaN 0.01 0.13  0.37   0.05
## pls            NA        NA        NA  NA   NA   NA  NaN 0.01  0.01   0.01
## mda            NA        NA        NA  NA   NA   NA   NA  NaN  1.00   0.01
## amdai          NA        NA        NA  NA   NA   NA   NA   NA   NaN   0.01
## avNNet         NA        NA        NA  NA   NA   NA   NA   NA    NA    NaN
options(digits=2)
melted_db <- melt(upper_tri, na.rm = TRUE)
head(melted_db)
##         Var1      Var2 value
## 11   svmPoly svmRadial  1.00
## 21   svmPoly svmLinear  0.68
## 22 svmRadial svmLinear  1.00
## 31   svmPoly        rf  1.00
## 32 svmRadial        rf  1.00
## 33 svmLinear        rf  1.00
colnames(melted_db) <- c("Var1", "Var2", "value")
ggheatmap <- ggplot(melted_db, aes(Var2, Var1, fill = value))+
  geom_tile(color = "white")+
  scale_fill_gradient2(low = "red", high = "blue", 
                       midpoint = 0.01, limit = c(0,1), space = "Lab", 
                       name="McNemar Test (p-value)") +
  theme_minimal() + 
  geom_text(aes(label = round(value, digits = 2)), color = "black", size = 4) +
  theme(
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    panel.grid.major = element_blank(),
    panel.border = element_blank(),
    panel.background = element_blank(),
    axis.ticks = element_blank(),
    legend.justification = c(1, 0),
    legend.position = c(0.6, 0.7),
    legend.direction = "horizontal")+
  guides(fill = guide_colorbar(barwidth = 7, barheight = 1,
                               title.position = "top", title.hjust = 0.5)) +
  ggtitle ("Year 2003")

###year 2016
load("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results/ImageProcess2016.RData")

db <- as.data.frame(matrix(nrow=10,ncol=10))
colnames(db) <- models
rownames(db) <- models

options("scipen"=100, digits= 3)
for (i in models){
  for (j in models){
    pred <- extract(prediction_stack[[c(i)]], xy_val, cellnumbers=T)
    dup <- duplicated(pred)
    pred <- pred[!dup,i]
    obs <- xy_val$class[!dup]
    
    #recode integers for predictions
    uniqueClasses <- sort(uniqueClasses)
    alg1 <- uniqueClasses[pred]
    head(alg1)
    
    pred <- extract(prediction_stack[[c(j)]], xy_val, cellnumbers=T)
    dup <- duplicated(pred)
    pred <- pred[!dup, j]
    
    #recode integers for predictions
    uniqueClasses <- sort(uniqueClasses)
    alg2 <- uniqueClasses[pred]
    head(alg2)
    
    tab <- cbind(obs, alg1, alg2)
    m.freq <- count(tab, c("obs","alg1", "alg2"))
    a <- sum(m.freq[m.freq$obs == m.freq$alg1 & m.freq$obs == m.freq$alg2, "freq"])
    b <- sum(m.freq[m.freq$obs == m.freq$alg1 & m.freq$obs != m.freq$alg2, "freq"])
    c <- sum(m.freq[m.freq$obs != m.freq$alg1 & m.freq$obs == m.freq$alg2, "freq"])
    d <- sum(m.freq[m.freq$obs != m.freq$alg1 & m.freq$obs != m.freq$alg2, "freq"])
    cont.tb <- as.table(matrix(c(a,b,c,d), ncol=2, byrow=T))
    db[i,j] <- mcnemar.test(cont.tb)[3]
  }
}  

db[db < 0.01] <- 0.01
db[db < 0.05 & db  > 0.01] <- 0.05
db[db > 0.05 & db < 0.1] <- 0.10
options(digits = 2)

#library(reshape2)
db <- as.matrix(db)
# Note that a correlation matrix has redundant information. We'll use the functions below to set half of it to NA.
get_upper_tri <- function(db){
  db[lower.tri(db)]<- NA
  return(db)
}
upper_tri <- get_upper_tri(db)
upper_tri
##           svmPoly svmRadial svmLinear   rf  knn  gbm  pls  mda amdai
## svmPoly       NaN      0.13      1.00 1.00 0.48 0.22 0.01 1.00  0.62
## svmRadial      NA       NaN      0.05 0.05 0.05 1.00 0.01 0.13  0.37
## svmLinear      NA        NA       NaN  NaN 1.00 0.10 0.01 1.00  0.25
## rf             NA        NA        NA  NaN 1.00 0.10 0.01 1.00  0.25
## knn            NA        NA        NA   NA  NaN 0.05 0.01 0.48  0.13
## gbm            NA        NA        NA   NA   NA  NaN 0.01 0.22  0.68
## pls            NA        NA        NA   NA   NA   NA  NaN 0.01  0.01
## mda            NA        NA        NA   NA   NA   NA   NA  NaN  0.48
## amdai          NA        NA        NA   NA   NA   NA   NA   NA   NaN
## avNNet         NA        NA        NA   NA   NA   NA   NA   NA    NA
##           avNNet
## svmPoly     0.01
## svmRadial   0.01
## svmLinear   0.01
## rf          0.01
## knn         0.01
## gbm         0.01
## pls         0.01
## mda         0.01
## amdai       0.01
## avNNet       NaN
options(digits=2)
melted_db <- melt(upper_tri, na.rm = TRUE)
head(melted_db)
##         Var1      Var2 value
## 11   svmPoly svmRadial  0.13
## 21   svmPoly svmLinear  1.00
## 22 svmRadial svmLinear  0.05
## 31   svmPoly        rf  1.00
## 32 svmRadial        rf  0.05
## 41   svmPoly       knn  0.48
colnames(melted_db) <- c("Var1", "Var2", "value")
ggheatmap2 <- ggplot(melted_db, aes(Var2, Var1, fill = value))+
  geom_tile(color = "white")+
  scale_fill_gradient2(low = "red", high = "blue", 
                       midpoint = 0.01, limit = c(0,1), space = "Lab", 
                       name="McNemar Test (p-value)") +
  theme_minimal() + 
  geom_text(aes(label = round(value, digits = 2)), color = "black", size = 4) +
  theme(
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    panel.grid.major = element_blank(),
    panel.border = element_blank(),
    panel.background = element_blank(),
    axis.ticks = element_blank(),
    legend.justification = c(1, 0),
    legend.position = c(0.6, 0.7),
    legend.direction = "horizontal")+
  guides(fill = guide_colorbar(barwidth = 7, barheight = 1,
                               title.position = "top", title.hjust = 0.5)) +
  ggtitle ("Year 2016")

library("cowplot")
## 
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggplot2':
## 
##     ggsave
plot_grid(ggheatmap, ggheatmap2, ncol=2)

#########################################################################################
################# Read accuracy tables obtained from confusion matrices ##################
#########################################################################################
###  User's and Producer's accuracies by algorithm and class
t1 <- read.csv2("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/acc.metrics2003_rev.csv")[,2:5]
t2 <- read.csv2("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/acc.metrics2016_rev.csv")[,2:5]
library(ggplot2)
library(reshape2)
myacc1 <- melt(t1)
## Using alg, class as id variables
myacc2 <- melt(t2)
## Using alg, class as id variables
myacc1$year <- "2003"
myacc2$year <- "2016"
levels(myacc1$class) <- c("Sand dunes", "Tidal areas", "Forest", "Reedbed","Sea dunes", "Grasslands", "Salt marshes")
levels(myacc2$class) <- c("Sand dunes", "Burned areas", "Tidal areas", "Forest", "Reedbed","Sea dunes", "Grasslands", "Salt marshes")

acc <- rbind(myacc1, myacc2)

#plot 8 x 5 
myggplot1 <- ggplot(acc, aes(y=value, x=alg, colour=alg)) +
  geom_point(stat="identity", size = 1) +
  xlab("Classification method")  +
  ylab("Accuracy") + 
  ggtitle("") + 
  theme_light(base_size = 8) +
  scale_colour_manual(values=colorRampPalette(c("grey", "blue"))(12)) +
  scale_x_discrete(limits= c( "amdai", "avNNet", "gbm", "knn", "mda","pls", "rf", "svmPoly", "svmRadial", "svmLinear", "Ens_SV", "Ens_WV")) + 
  facet_grid (variable+year ~ class, scales = "free") + coord_flip()
print(myggplot1 +
        theme(axis.text.x = element_text(angle = 45, vjust=1, hjust=1)))
## Warning: Removed 7 rows containing missing values (geom_point).

##### Kappa coef. and overall accuracy per year
t1 <- read.csv2("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/models.metrics2003_rev.csv")[,1:3]
t2 <- read.csv2("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/model.metrics2016_rev.csv")[,1:3]

myacc1 <- melt(t1)
## Using X as id variables
myacc2 <- melt(t2)
## Using X as id variables
myacc1$year <- "2003"
myacc2$year <- "2016"
acc <- rbind(myacc1, myacc2)
colnames(acc) <-  c("alg", "variable", "value", "year")

###6 x 5
myggplot1 <- ggplot(acc, aes(y=value, x=year, fill=year)) +
  geom_boxplot() +
  xlab("Land cover class") +
  theme(axis.text.x = element_text(angle = 90, vjust=0.5, hjust=1)) +
  ylab("Year") + 
  ggtitle("") + 
  theme_light(base_size = 8) + geom_jitter(aes(colour = alg)) +
  scale_fill_manual(values=colorRampPalette(c("grey", "blue"))(12)) +
  scale_color_manual(values=c("yellow","grey60"," red1", "red3", "lightblue", "blue1", "blue4", "grey80", "green", "purple1", "purple3", "purple4")) +
  facet_grid (~ variable, scales = "free")
print(myggplot1)

################################################################################
########################## Habitat changes analysis ############################
################################################################################
library(lulcc)
## Warning: package 'lulcc' was built under R version 3.4.2
setwd("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/Raster/")
datafiles <- Sys.glob("*.tif") #Or whatever identifies your files
r.stack <- stack()
for(i in 1:NROW(datafiles)){
  tempraster <- raster(datafiles[i])
  r.stack <- stack(r.stack,tempraster)
}
all_2003 <- raster::subset(r.stack, grep('2003', names(r.stack), value = T))
all_2016 <- raster::subset(r.stack, grep('2016', names(r.stack), value = T))
#reclasify to match habitat classes with year 2016
all_2003_reclass <- reclassify(all_2003,c(-Inf,1,1, 1,2,3, 2,3,4, 3,4,5, 4,5,6, 5,6,7, 6,7,8))
names(all_2003_reclass) <- c("Ens_SV", "Ens_WV", "amdai", "avNNet", "gbm", "knn", "mda", "pls", "rf","svmLinear", "svmPoly",
                             "svmRadial")
names(all_2016) <- c("Ens_SV", "Ens_WV", "amdai", "avNNet", "gbm", "knn", "mda", "pls", "rf","svmLinear", "svmPoly",
                     "svmRadial")
#reorder
all_2016 <- stack(all_2016[[3]],all_2016[[4]],all_2016[[5]],all_2016[[6]],all_2016[[7]],all_2016[[8]],
                  all_2016[[9]], all_2016[[10]],all_2016[[11]],all_2016[[12]], all_2016[[1]],all_2016[[2]])
all_2003_reclass <- stack(all_2003_reclass[[3]],all_2003_reclass[[4]],all_2003_reclass[[5]],all_2003_reclass[[6]],all_2003_reclass[[7]],all_2003_reclass[[8]],
                          all_2003_reclass[[9]], all_2003_reclass[[10]],all_2003_reclass[[11]], all_2003_reclass[[12]], all_2003_reclass[[1]],all_2003_reclass[[2]])

##plot maps
library(rasterVis)
library(ggplot2)
categories <- c("Sand dunes", "Burned areas", "Tidal areas", "Forest", 
                "Reedbed","Sea dunes", "Grasslands", "Salt marshes")
##14 x 12
gplot(all_2003_reclass) + geom_raster(aes(fill = value)) + 
  facet_wrap(~ variable) +
  scale_fill_gradientn(name="Habitats 2003",colours=c("grey90", "red2","blue3", "darkgreen" ,"yellow", "seagreen4","orange1","yellowgreen"),
                       breaks=c(1,2,3,4,5,6,7,8), na.value = "white", labels=categories) +
  theme(plot.margin = unit(c(0.001,0.001,0.001,0.001), "cm"), panel.grid.major = element_line(colour = "grey70", size = 0.2), 
        panel.grid.minor = element_blank(), panel.background = element_rect(fill = "white", colour = "white")) 

gplot(all_2016) + geom_raster(aes(fill = value)) + 
  facet_wrap(~ variable) +
  scale_fill_gradientn(name="Habitats 2016",colours=c("grey90", "red2","blue3", "darkgreen" ,"yellow", "seagreen4","orange1","yellowgreen"),
                       breaks=c(1,2,3,4,5,6,7,8), na.value = "white", labels=categories) +
  theme(plot.margin = unit(c(0.001,0.001,0.001,0.001), "cm"), panel.grid.major = element_line(colour = "grey70", size = 0.2), 
        panel.grid.minor = element_blank(), panel.background = element_rect(fill = "white", colour = "white")) 

#crostabulation
my.totals <- 0
for (my.alg in names(all_2016)[c(1,3:5,7:12)]){
  Table <- crossTabulate(all_2003_reclass[[my.alg]], all_2016[[my.alg]], categories=(c(1,2,3,4,5,6,7,8)))
  Table <- Table*0.09
  rownames(Table) <- categories
  colnames(Table) <- categories
  #save
  #write.csv2(Table, paste("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/ChangeAnalysis/CrossTab_", my.alg, ".csv", sep=""))
  
  
  ##total per category
  total03 <- total(all_2003_reclass[[my.alg]])
  total03 <- cbind(total03$total, 0)#add column empty for area burnt
  total03 <- total03[c(1,8,2,3,4,5,6,7)]#reorder columns
  total16 <- total(all_2016[[my.alg]])
  
  totals <- as.data.frame(cbind(total03, t(total16$total)))
  rownames(totals) <- categories
  colnames(totals) <- c("2003", "2016")
  totals$alg <- my.alg
  my.totals <- rbind(my.totals, totals)
  #write.csv2(totals,paste("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/ChangeAnalysis/Totales_", my.alg, ".csv", sep=""))
}
## Warning in total(all_2003_reclass[[my.alg]]): missing argument
## 'categories': getting categories from 'x'
## Warning in total(all_2016[[my.alg]]): missing argument 'categories':
## getting categories from 'x'
## Warning in total(all_2003_reclass[[my.alg]]): missing argument
## 'categories': getting categories from 'x'
## Warning in total(all_2016[[my.alg]]): missing argument 'categories':
## getting categories from 'x'
## Warning in total(all_2003_reclass[[my.alg]]): missing argument
## 'categories': getting categories from 'x'
## Warning in total(all_2016[[my.alg]]): missing argument 'categories':
## getting categories from 'x'
## Warning in total(all_2003_reclass[[my.alg]]): missing argument
## 'categories': getting categories from 'x'
## Warning in total(all_2016[[my.alg]]): missing argument 'categories':
## getting categories from 'x'
## Warning in total(all_2003_reclass[[my.alg]]): missing argument
## 'categories': getting categories from 'x'
## Warning in total(all_2016[[my.alg]]): missing argument 'categories':
## getting categories from 'x'
## Warning in total(all_2003_reclass[[my.alg]]): missing argument
## 'categories': getting categories from 'x'
## Warning in total(all_2016[[my.alg]]): missing argument 'categories':
## getting categories from 'x'
## Warning in total(all_2003_reclass[[my.alg]]): missing argument
## 'categories': getting categories from 'x'
## Warning in total(all_2016[[my.alg]]): missing argument 'categories':
## getting categories from 'x'
## Warning in total(all_2003_reclass[[my.alg]]): missing argument
## 'categories': getting categories from 'x'
## Warning in total(all_2016[[my.alg]]): missing argument 'categories':
## getting categories from 'x'
## Warning in total(all_2003_reclass[[my.alg]]): missing argument
## 'categories': getting categories from 'x'
## Warning in total(all_2016[[my.alg]]): missing argument 'categories':
## getting categories from 'x'
## Warning in total(all_2003_reclass[[my.alg]]): missing argument
## 'categories': getting categories from 'x'
## Warning in total(all_2016[[my.alg]]): missing argument 'categories':
## getting categories from 'x'
my.totals <- my.totals[2:81,]
#plots
library(ggplot2)
library(reshape)
## 
## Attaching package: 'reshape'
## The following objects are masked from 'package:reshape2':
## 
##     colsplit, melt, recast
## The following object is masked from 'package:class':
## 
##     condense
## The following objects are masked from 'package:plyr':
## 
##     rename, round_any
db_totales <- melt(my.totals)
## Using alg as id variables
db_totales$LCT_categories <- categories
names(db_totales) <- c("alg", "year", "value", "Classes")
db_totales$Hectares <- (db_totales$value)*0.09 #30 x 30 meters pizel size
#plot 6 x 8
myggplot1 <- ggplot(db_totales, aes(x=Classes, y=Hectares, fill=Classes)) +
  geom_boxplot() +
  theme(axis.text.x = element_text(angle = 90, vjust=0.5, hjust=1)) +
  ylab("Hectares") + 
  ggtitle("") + 
  theme_light(base_size = 8) + geom_jitter(aes(colour = alg),alpha=.3) +
  scale_fill_brewer () +
  scale_fill_manual(values=colorRampPalette(c("grey", "blue"))(8)) +
  scale_color_manual(values=c("black"," red1", "red3",  "black", "black", "black", "black","black","black","black","black")) +
  facet_grid (~ year, scales = "free")
## Scale for 'fill' is already present. Adding another scale for 'fill',
## which will replace the existing scale.
print(myggplot1 +
        theme(axis.text.x = element_text(angle = 45, vjust=1, hjust=1)) +
        xlab("Habitat classes"))

#pct of change
my.totals$pct <- ((my.totals$`2016`-my.totals$`2003`)/my.totals$`2003`)*100
#write.csv2(my.totals,paste("E:/USC/OneDrive - Universidade de Santiago de Compostela/Corrubedo/Results_v2/ChangeAnalysis/my.totales_pct.csv", sep=""))

####### end