SETTING THE DIRECTORY AND READING THE DATA

setwd("C:/Users/Bagga/Desktop/Internship 2018/Week 3, Day 1")
store <- read.csv("C:/Users/Bagga/Desktop/Internship 2018/Week 3, Day 1/Store24.csv")
store
##    store   Sales Profit     MTenure     CTenure   Pop      Comp Visibility
## 1      1 1060294 265014   0.0000000  24.8049300  7535  2.797888          3
## 2      2 1619874 424007  86.2221900   6.6365500  8630  4.235555          4
## 3      3 1099921 222735  23.8885400   5.0266940  9695  4.494666          3
## 4      4 1053860 210122   0.0000000   5.3716630  2797  4.253946          4
## 5      5 1227841 300480   3.8773700   6.8665300 20335  1.651364          2
## 6      6 1703140 469050 149.9359000  11.3511300 16926  3.184613          3
## 7      7 1809256 476355  62.5308000   7.3264880 17754  3.377900          2
## 8      8 1378482 361115   0.0000000  56.7720800 20824  2.895114          4
## 9      9 2113089 474725 108.9935000   6.0616020 26519  2.637630          2
## 10    10 1080979 278625  31.4789900  23.1950700 16381  2.270771          4
## 11    11 1583446 389886  44.8197700   2.0369610 21550  3.272398          2
## 12    12 1444714 329020 277.9877000   6.6365500 11160  4.903895          4
## 13    13  857843 152513   0.6571813   1.5770020 14186  4.435671          3
## 14    14 1171491 261571  87.3722600   2.9568790  6898  4.233057          4
## 15    15 1005627 203951   0.0000000   8.4763860  8684  3.844220          3
## 16    16  883864 196277  23.6585300   4.6817250  6872  3.344703          3
## 17    17 1095695 265584  31.7090000   3.6468170 14477  2.561704          3
## 18    18 1704826 394039 239.9698000  33.7741300  3807  3.994713          5
## 19    19 1127332 261495   3.4173430  16.9856300  4669  2.753616          2
## 20    20 1320950 269235  65.0609500   5.9466120 15377  4.148495          3
## 21    21 1237518 282584  24.1185600   7.2114990 14022  4.020201          3
## 22    22 1433440 367036  18.3682200  25.9548300  8280  4.464360          4
## 23    23 1351972 277414  12.3878700   3.4168380 13797  3.594539          3
## 24    24 1071307 267354  44.8197700   3.4168380  9069  3.280590          2
## 25    25 1282886 282124   0.0000000  10.3162200  6183  3.517020          3
## 26    26  898548 211912   0.6571813  20.4353200  9999  4.178195          3
## 27    27  985862 230194  50.1100800  17.4455900  8153  3.719806          3
## 28    28 1141465 273036  23.8885400  16.9856300 14673  3.193422          3
## 29    29  924782 263956  19.5182900  23.5400400 11350  5.392077          3
## 30    30 1874873 333607  73.3414400  23.4250500  1116  3.578323          3
## 31    31  993597 211885   0.0000000  10.7761800  2578  3.100689          2
## 32    32  828918 149033  36.0792600   6.6365500  9697  4.641468          3
## 33    33 1369092 292745  51.7201700   3.8767970  8177  5.309016          3
## 34    34 1557084 382199  29.1788500  19.7453800 10923  2.361195          4
## 35    35 1443230 322624  36.9993100  14.8008200 14361  3.613021          4
## 36    36 1016950 219292  41.5995800  20.8952800  3218  3.929021          3
## 37    37 1202917 187765  23.1985000   1.3470230  8870  4.491863          3
## 38    38  991524 203184  15.6080600   1.5770020  6557  4.225993          3
## 39    39  979361 221130  34.6991800   5.4866530  8896  5.046338          2
## 40    40 1042664 222913 122.7943000  16.7556500  2521 11.127880          3
## 41    41  744211 147327  14.9180200  11.9260800  9701  4.364600          2
## 42    42 1273855 264072   2.4972890  86.0944600  2106  3.231049          3
## 43    43 1296711 337233 177.5704000   5.4866530  3495  3.653641          4
## 44    44 1807740 439781 182.2364000 114.1519000 20624  3.628561          3
## 45    45 1602362 410149  47.6456500   9.1663250 17808  3.472609          5
## 46    46 1339214 315780   6.1775050   5.2566730  9285  3.144458          4
## 47    47 1665657 387853  12.8479000   6.6365500 23623  2.422707          2
## 48    48 1243167 284169  31.4789900   8.2464070  8491  4.848749          3
## 49    49  983296 195276  55.4003900  14.6858300  1863  3.713871          4
## 50    50  935257 251013  12.8479000  16.0657100 14653  1.751638          3
## 51    51 1027035 237344   3.4173430   7.0965090  3126  2.447474          2
## 52    52 1073008 169201  24.1185600   3.4168380 14859  6.585143          3
## 53    53 1355684 365018  57.2404900   8.2464070  6909  3.156869          2
## 54    54  811190 159792   6.6703910   3.8767970  3747  3.756011          3
## 55    55  925744 147672   6.6703910  18.3655000 10532  6.389294          4
## 56    56  916197 189235   4.7974240   2.7268990 13740  4.597269          2
## 57    57  699306 122180  24.3485700   2.9568790  3642  2.973376          3
## 58    58  989760 227601   4.5674100   4.1067760  8477  3.993874          4
## 59    59 1334898 303069  13.3079200  13.7659100  6231  3.301353          3
## 60    60 1433624 356071  33.5162500   6.4065710  8845  2.719548          3
## 61    61  716589 177046  21.8184200  13.3059500  3014  3.263994          3
## 62    62  942915 202641  12.1578600   6.8665300  9820  4.201450          3
## 63    63 1045264 239036   8.2476260   6.8665300  7581  4.136580          3
## 64    64  969509 221157   0.0000000   0.8870637 17110  2.378613          4
## 65    65 1349972 301641 150.2317000  23.4250500  1075  3.218960          3
## 66    66  879581 146058 115.2039000   3.8767970  1046  6.569790          2
## 67    67 1228052 362067   5.2574510   3.4168380 11552  3.583143          3
## 68    68 1018195 236339  17.4481600   2.2669400  9018  3.504810          4
## 69    69 1574290 375393  44.1297300  26.7597500  5050  3.949484          3
## 70    70 1207204 254203  14.9180200   3.8767970 19809  3.122484          3
## 71    71  977566 198529  43.8997200  38.3737200  3265  3.856324          2
## 72    72  848140 196772 126.4745000  27.4496900  3151  3.680586          2
## 73    73 1115450 279193  41.1395500   6.4065710  6276  4.180132          4
## 74    74 1782957 518998 171.0972000  29.5195100 10913  2.319850          3
## 75    75 1321870 296826   2.2672760   8.7063660  8966  1.886111          4
##    PedCount Res Hours24 CrewSkill MgrSkill  ServQual
## 1         3   1       1      3.56 3.150000  86.84327
## 2         3   1       1      3.20 3.556667  94.73510
## 3         3   1       1      3.80 4.116667  78.94776
## 4         2   1       1      2.06 4.100000 100.00000
## 5         5   0       1      3.65 3.588889  68.42164
## 6         4   1       0      3.58 4.605556  94.73510
## 7         5   1       1      3.94 4.100000  81.57837
## 8         3   1       1      3.98 3.800000  78.94776
## 9         4   1       1      3.22 3.583333 100.00000
## 10        3   1       0      3.54 3.561111 100.00000
## 11        5   1       1      3.43 3.200000 100.00000
## 12        4   1       0      3.35 3.238889 100.00000
## 13        2   1       1      4.10 3.000000  76.30609
## 14        2   1       1      2.54 3.890000 100.00000
## 15        4   1       1      3.50 3.427778  94.73510
## 16        3   1       0      3.05 4.000000  97.36939
## 17        4   1       1      3.20 3.000000  78.94776
## 18        3   1       1      3.18 3.866667  97.36939
## 19        3   1       1      3.65 3.083333  68.42164
## 20        2   1       1      3.80 3.894444 100.00000
## 21        3   1       1      3.60 3.677778  94.73510
## 22        3   1       1      3.30 3.973333 100.00000
## 23        4   1       1      3.65 3.588889 100.00000
## 24        3   1       0      2.40 4.083333 100.00000
## 25        3   1       1      2.93 3.500000  86.84327
## 26        2   1       1      3.52 3.100000  97.36939
## 27        2   1       1      4.03 3.543333 100.00000
## 28        4   1       0      3.55 2.988889  84.20898
## 29        2   1       1      3.46 3.610000 100.00000
## 30        2   1       1      3.52 3.473333 100.00000
## 31        2   1       1      2.86 3.673333  88.92860
## 32        3   1       0      3.28 3.550000  73.68654
## 33        2   1       1      3.56 3.088889  96.05408
## 34        4   1       1      3.58 3.577778  97.36939
## 35        3   1       1      3.90 3.916667 100.00000
## 36        2   1       1      3.50 4.244444 100.00000
## 37        3   1       1      3.38 4.016667  73.68654
## 38        2   1       1      3.68 4.494444 100.00000
## 39        4   1       1      3.90 3.872222  81.57837
## 40        4   1       1      3.45 4.194445  78.94776
## 41        3   1       1      3.03 3.672222  81.13993
## 42        2   1       1      3.44 3.656667  98.68839
## 43        3   1       1      3.73 3.608233  94.73510
## 44        4   0       1      4.06 4.172222  86.84327
## 45        3   1       1      3.58 4.622222 100.00000
## 46        3   1       1      3.40 3.444445  80.52612
## 47        5   1       1      4.23 3.950000  99.80105
## 48        2   1       1      3.42 3.872222  97.36939
## 49        1   1       1      3.23 3.576667  81.58205
## 50        4   1       0      4.64 3.016667  76.31715
## 51        4   1       1      3.66 3.150000  60.52612
## 52        3   1       1      3.83 3.833333  94.73510
## 53        2   1       1      3.63 3.683333  94.73510
## 54        2   1       1      3.08 3.933333  65.78734
## 55        3   1       1      3.49 3.477778  76.31346
## 56        3   1       0      3.10 3.800000  64.35046
## 57        2   1       1      3.35 2.956667  84.21266
## 58        2   1       1      2.93 3.050000  57.89552
## 59        3   1       1      3.22 3.233333 100.00000
## 60        4   1       1      3.37 3.344445  57.89552
## 61        1   1       1      3.07 3.126667  73.68654
## 62        4   1       0      3.08 3.300000  61.40299
## 63        3   1       1      3.38 3.666667 100.00000
## 64        3   1       1      3.28 3.311111  79.47388
## 65        1   1       1      3.73 3.440000  63.15673
## 66        3   1       1      4.03 3.673333  80.26675
## 67        3   1       1      3.37 4.150000  97.36939
## 68        2   1       1      2.83 3.000000  81.31677
## 69        3   1       1      3.56 3.940000  92.89294
## 70        4   1       0      3.24 3.538889  78.94407
## 71        1   1       1      3.88 3.466667  79.94253
## 72        1   1       1      3.73 3.416667  73.68654
## 73        3   1       1      3.20 4.083333  85.96640
## 74        4   1       0      3.50 4.405556  94.73878
## 75        4   0       1      3.57 3.344445  89.47388

SUMMARY OF THE DATA

summary(store)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00

STRUCTURE OF THE DATA

str(store)
## 'data.frame':    75 obs. of  14 variables:
##  $ store     : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Sales     : int  1060294 1619874 1099921 1053860 1227841 1703140 1809256 1378482 2113089 1080979 ...
##  $ Profit    : int  265014 424007 222735 210122 300480 469050 476355 361115 474725 278625 ...
##  $ MTenure   : num  0 86.22 23.89 0 3.88 ...
##  $ CTenure   : num  24.8 6.64 5.03 5.37 6.87 ...
##  $ Pop       : int  7535 8630 9695 2797 20335 16926 17754 20824 26519 16381 ...
##  $ Comp      : num  2.8 4.24 4.49 4.25 1.65 ...
##  $ Visibility: int  3 4 3 4 2 3 2 4 2 4 ...
##  $ PedCount  : int  3 3 3 2 5 4 5 3 4 3 ...
##  $ Res       : int  1 1 1 1 0 1 1 1 1 1 ...
##  $ Hours24   : int  1 1 1 1 1 0 1 1 1 0 ...
##  $ CrewSkill : num  3.56 3.2 3.8 2.06 3.65 3.58 3.94 3.98 3.22 3.54 ...
##  $ MgrSkill  : num  3.15 3.56 4.12 4.1 3.59 ...
##  $ ServQual  : num  86.8 94.7 78.9 100 68.4 ...

MEAN AND STANDARD DEVIATION

library(psych)
describe(store)[,1:4]
##            vars  n       mean        sd
## store         1 75      38.00     21.79
## Sales         2 75 1205413.12 304531.31
## Profit        3 75  276313.61  89404.08
## MTenure       4 75      45.30     57.67
## CTenure       5 75      13.93     17.70
## Pop           6 75    9825.59   5911.67
## Comp          7 75       3.79      1.31
## Visibility    8 75       3.08      0.75
## PedCount      9 75       2.96      0.99
## Res          10 75       0.96      0.20
## Hours24      11 75       0.84      0.37
## CrewSkill    12 75       3.46      0.41
## MgrSkill     13 75       3.64      0.41
## ServQual     14 75      87.15     12.61

Bottom 10 most profitable stores.

attach(store)
newdata <- store[order(Profit),] 
newdata[1:10,] 
##    store   Sales Profit     MTenure   CTenure   Pop     Comp Visibility
## 57    57  699306 122180  24.3485700  2.956879  3642 2.973376          3
## 66    66  879581 146058 115.2039000  3.876797  1046 6.569790          2
## 41    41  744211 147327  14.9180200 11.926080  9701 4.364600          2
## 55    55  925744 147672   6.6703910 18.365500 10532 6.389294          4
## 32    32  828918 149033  36.0792600  6.636550  9697 4.641468          3
## 13    13  857843 152513   0.6571813  1.577002 14186 4.435671          3
## 54    54  811190 159792   6.6703910  3.876797  3747 3.756011          3
## 52    52 1073008 169201  24.1185600  3.416838 14859 6.585143          3
## 61    61  716589 177046  21.8184200 13.305950  3014 3.263994          3
## 37    37 1202917 187765  23.1985000  1.347023  8870 4.491863          3
##    PedCount Res Hours24 CrewSkill MgrSkill ServQual
## 57        2   1       1      3.35 2.956667 84.21266
## 66        3   1       1      4.03 3.673333 80.26675
## 41        3   1       1      3.03 3.672222 81.13993
## 55        3   1       1      3.49 3.477778 76.31346
## 32        3   1       0      3.28 3.550000 73.68654
## 13        2   1       1      4.10 3.000000 76.30609
## 54        2   1       1      3.08 3.933333 65.78734
## 52        3   1       1      3.83 3.833333 94.73510
## 61        1   1       1      3.07 3.126667 73.68654
## 37        3   1       1      3.38 4.016667 73.68654
detach(store)

Top 10 least profitable stores.

attach(store)
newdata <- store[order(-Profit),] 
newdata[1:10,] 
##    store   Sales Profit   MTenure    CTenure   Pop     Comp Visibility
## 74    74 1782957 518998 171.09720  29.519510 10913 2.319850          3
## 7      7 1809256 476355  62.53080   7.326488 17754 3.377900          2
## 9      9 2113089 474725 108.99350   6.061602 26519 2.637630          2
## 6      6 1703140 469050 149.93590  11.351130 16926 3.184613          3
## 44    44 1807740 439781 182.23640 114.151900 20624 3.628561          3
## 2      2 1619874 424007  86.22219   6.636550  8630 4.235555          4
## 45    45 1602362 410149  47.64565   9.166325 17808 3.472609          5
## 18    18 1704826 394039 239.96980  33.774130  3807 3.994713          5
## 11    11 1583446 389886  44.81977   2.036961 21550 3.272398          2
## 47    47 1665657 387853  12.84790   6.636550 23623 2.422707          2
##    PedCount Res Hours24 CrewSkill MgrSkill  ServQual
## 74        4   1       0      3.50 4.405556  94.73878
## 7         5   1       1      3.94 4.100000  81.57837
## 9         4   1       1      3.22 3.583333 100.00000
## 6         4   1       0      3.58 4.605556  94.73510
## 44        4   0       1      4.06 4.172222  86.84327
## 2         3   1       1      3.20 3.556667  94.73510
## 45        3   1       1      3.58 4.622222 100.00000
## 18        3   1       1      3.18 3.866667  97.36939
## 11        5   1       1      3.43 3.200000 100.00000
## 47        5   1       1      4.23 3.950000  99.80105
detach(store)

SCATTER PLOT OF PROFIT VS MTENURE

library("corrplot")
library("gplots")

plot(store$Profit,store$MTenure,
     col="blue",
     # ylim = c(0,300),
     main = "Profit vs MTenure",
     xlab = "Profit", ylab = "MTenure")
abline(h=mean(store$MTenure),col="black", lty="dotted")
abline(v=mean(store$Profit),col="black", lty="dotted")
abline(lm(store$MTenure ~ store$Profit)) #lm = REGRESSION LINE

SCATTER PLOT OF PROFIT VS TENURE

library(corrplot)
library(gplots)

plot(store$Profit,store$CTenure,
     col="blue",
     main = "Profit vs CTenure",
     xlab = "Profit", ylab = "CTenure")
abline(h=mean(store$CTenure),col="black", lty="dotted")
abline(v=mean(store$Profit),col="black", lty="dotted")
abline(lm(store$CTenure ~ store$Profit)) #lm = REGRESSION LINE

Correlation matirx

cor(store [, ])
##                  store       Sales      Profit     MTenure      CTenure
## store       1.00000000 -0.22693400 -0.19993481 -0.05655216  0.019930097
## Sales      -0.22693400  1.00000000  0.92387059  0.45488023  0.254315184
## Profit     -0.19993481  0.92387059  1.00000000  0.43886921  0.257678895
## MTenure    -0.05655216  0.45488023  0.43886921  1.00000000  0.243383135
## CTenure     0.01993010  0.25431518  0.25767890  0.24338314  1.000000000
## Pop        -0.28936691  0.40348147  0.43063326 -0.06089646 -0.001532449
## Comp        0.03194023 -0.23501372 -0.33454148  0.18087179 -0.070281327
## Visibility -0.02648858  0.13065638  0.13569207  0.15651731  0.066506016
## PedCount   -0.22117519  0.42391087  0.45023346  0.06198608 -0.084112627
## Res        -0.03142976 -0.16672402 -0.15947734 -0.06234721 -0.340340876
## Hours24     0.02687986  0.06324716 -0.02568703 -0.16513872  0.072865022
## CrewSkill   0.04866273  0.16402179  0.16008443  0.10162169  0.257154817
## MgrSkill   -0.07218804  0.31163056  0.32284842  0.22962743  0.124045346
## ServQual   -0.32246921  0.38638112  0.36245032  0.18168875  0.081156172
##                     Pop        Comp  Visibility     PedCount         Res
## store      -0.289366908  0.03194023 -0.02648858 -0.221175193 -0.03142976
## Sales       0.403481471 -0.23501372  0.13065638  0.423910867 -0.16672402
## Profit      0.430633264 -0.33454148  0.13569207  0.450233461 -0.15947734
## MTenure    -0.060896460  0.18087179  0.15651731  0.061986084 -0.06234721
## CTenure    -0.001532449 -0.07028133  0.06650602 -0.084112627 -0.34034088
## Pop         1.000000000 -0.26828355 -0.04998269  0.607638861 -0.23693726
## Comp       -0.268283553  1.00000000  0.02844548 -0.146325204  0.21923878
## Visibility -0.049982694  0.02844548  1.00000000 -0.141068116  0.02194756
## PedCount    0.607638861 -0.14632520 -0.14106812  1.000000000 -0.28437852
## Res        -0.236937265  0.21923878  0.02194756 -0.284378520  1.00000000
## Hours24    -0.221767927  0.12957478  0.04692587 -0.275973353 -0.08908708
## CrewSkill   0.282845090 -0.04229731 -0.19745297  0.213672596 -0.15331247
## MgrSkill    0.083554590  0.22407913  0.07348301  0.087475440 -0.03213640
## ServQual    0.123946521  0.01814508  0.20992919 -0.005445552  0.09081624
##                Hours24   CrewSkill    MgrSkill     ServQual
## store       0.02687986  0.04866273 -0.07218804 -0.322469213
## Sales       0.06324716  0.16402179  0.31163056  0.386381121
## Profit     -0.02568703  0.16008443  0.32284842  0.362450323
## MTenure    -0.16513872  0.10162169  0.22962743  0.181688755
## CTenure     0.07286502  0.25715482  0.12404535  0.081156172
## Pop        -0.22176793  0.28284509  0.08355459  0.123946521
## Comp        0.12957478 -0.04229731  0.22407913  0.018145080
## Visibility  0.04692587 -0.19745297  0.07348301  0.209929194
## PedCount   -0.27597335  0.21367260  0.08747544 -0.005445552
## Res        -0.08908708 -0.15331247 -0.03213640  0.090816237
## Hours24     1.00000000  0.10536295 -0.03883007  0.058325655
## CrewSkill   0.10536295  1.00000000 -0.02100949 -0.033516504
## MgrSkill   -0.03883007 -0.02100949  1.00000000  0.356702708
## ServQual    0.05832565 -0.03351650  0.35670271  1.000000000

CORRELETION

attach(store)
cor.test(Profit,MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  Profit and MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692
cor.test(Profit,CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  Profit and CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

P-VALUE OF PROFIT AND MTENURE - 8.193e-05

P-VALUE OF PROFIT AND CTENURE - 0.02562

CORRERAM

library(corrplot)
library(gplots)

par(mfrow=c(1,1))
corrplot.mixed(corr = cor(store [, ]), use = "complete.obs",
               upper = "ellipse",tl.pos= "lt")

REGRESSION ANALYSIS

model <- lm(Profit ~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility, data = store)
summary(model)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

INTERPRETATION

EXECUTIVE SUMMARY

THE PREDICTED EQUATION : PROFIT = 7610 + 760.99MTENURE + 955.97CTENURE + (-25286.88COMP) + 3.66POP + 34087.35PEDCOUNT + 91584.67RES ## +63233.30HOURS24 + 12625.44VISIBILITY

THE BETA COEFFICIENTS, MTENURE, COMP(NUMBER OF COMPETITORS) AND PEDCOUNT(PEDESTRIAN FOOT RATING) ARE HIGHLY STATISTICALLY SIGNIFICANT,

WHILE THE BETA COEFFICIENTS OF VISIBILITY AND PROFIT ARE NOT AT ALL STATISTICALLY SIGNIFICANT.

THE BETA COEEFICIENTS OF CTENURE, POP(POPULATION), Res(RESIDENTIAL VS INDUSTRIAL) ARE LIKELY TO BE LESS STATISTICALLY SIGNIFICANT

The regression coefficient (760.99) is significantly dfferent from zero (p < 0.001)

There is an expected increase of profit of 761 for every 1 month increase in Manager’s Tenure.

The regression coefficient (944.97) is not significantly dfferent from zero (p > 0.001)

There is an expected decrease of profit of 945 for every 1 month increase in Crew’s Tenure.

THE MULTIPLE R-SQUARED (0.637) INDICATES THAT THE MODEL ACCOUNTS FOR 63.7% OF THE VARIANCE IN PROFIT

THE RESIDUAL STANDARD ERROR (56970) CAN BE THOUGHT OF AS THE AVERAGE ERROR IN PREDICTING PROFIT USING THIS MODEL

THE F-STATISITCS PREDICT THAT THE MODEL IS HIGHLY SIGNIFICANT AS P-VALUE IS 5.382e-12 (p< 0.001)