Task 4c

Read and View the data using read.csv

store.df <- read.csv(paste("Store24.csv", sep=""))
View(store.df)

Summary statistics

summary(store.df)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00

Task 4d

Use R to measure the mean and standard deviation of Profit.

mean(store.df$Profit, na.rm = FALSE)
## [1] 276313.6
sd(store.df$Profit, na.rm = FALSE)
## [1] 89404.08

Use R to measure the mean and standard deviation of MTenure.

mean(store.df$MTenure, na.rm = FALSE)
## [1] 45.29644
sd(store.df$MTenure, na.rm = FALSE)
## [1] 57.67155

Use R to measure the mean and standard deviation of CTenure.

mean(store.df$CTenure, na.rm = FALSE)
## [1] 13.9315
sd(store.df$CTenure, na.rm = FALSE)
## [1] 17.69752

TASK 4f- Replicate Exhibit 1 shown in the case, using R

Use R to print the {StoreID, Sales, Profit, MTenure, CTenure} of the top 10 most profitable stores.

attach(store.df)
most_profitable_stores <- store.df[order(-Profit), ] # sort by Profit (ascending)
most_profitable_stores[1:10, c(1, 3:5)] # see the first 10 rows
##    store Profit   MTenure    CTenure
## 74    74 518998 171.09720  29.519510
## 7      7 476355  62.53080   7.326488
## 9      9 474725 108.99350   6.061602
## 6      6 469050 149.93590  11.351130
## 44    44 439781 182.23640 114.151900
## 2      2 424007  86.22219   6.636550
## 45    45 410149  47.64565   9.166325
## 18    18 394039 239.96980  33.774130
## 11    11 389886  44.81977   2.036961
## 47    47 387853  12.84790   6.636550

Use R to print the {StoreID, Sales, Profit, MTenure, CTenure} of the bottom 10 least profitable stores.

least_profitable_stores <- store.df[order(Profit), ] # sort by Profit (descending)
least_profitable_stores[10:1, c(1, 3:5)] # see the first 10 rows
##    store Profit     MTenure   CTenure
## 37    37 187765  23.1985000  1.347023
## 61    61 177046  21.8184200 13.305950
## 52    52 169201  24.1185600  3.416838
## 54    54 159792   6.6703910  3.876797
## 13    13 152513   0.6571813  1.577002
## 32    32 149033  36.0792600  6.636550
## 55    55 147672   6.6703910 18.365500
## 41    41 147327  14.9180200 11.926080
## 66    66 146058 115.2039000  3.876797
## 57    57 122180  24.3485700  2.956879
detach(store.df)

TASK 4g - Scatter Plots

Use R to draw a scatter plot of Profit vs. MTenure.

plot(store.df$MTenure, store.df$Profit, 
     col="black",
     main="Scatterplot of Profit vs. MTenure",
     xlab="MTenure", ylab="Profit")

abline(v=mean(store.df$MTenure), col="green", lty="dotted")
abline(h=mean(store.df$Profit), col="green", lty="dotted")
abline(lm(store.df$Profit ~ store.df$MTenure), col="red", lty="dotted")

TASK 4h - Scatter Plots (contd.)

Use R to draw a scatter plot of Profit vs. CTenure.

plot(store.df$CTenure, store.df$Profit, 
     col="black",
     main="Scatterplot of Profit vs. CTenure",
     xlab="CTenure", ylab="Profit")

abline(v=mean(store.df$CTenure), col="green", lty="dotted")
abline(h=mean(store.df$Profit), col="green", lty="dotted")
abline(lm(store.df$Profit ~ store.df$CTenure), col="red", lty="dotted")

TASK 4i - Correlation Matrix

Use R to construct a Correlation Matrix for all the variables in the dataset. (Display the numbers up to 2 Decimal places)

dim(store.df)
## [1] 75 14
round(cor(store.df[, ]), digits = 2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00

TASK 4j - Correlations

Use R to measure the correlation between Profit and MTenure. (Display the numbers up to 2 Decimal places)

round(cor(store.df$Profit, store.df$CTenure), digits = 2)
## [1] 0.26

Use R to measure the correlation between Profit and CTenure. (Display the numbers up to 2 Decimal places)

round(cor(store.df$Profit, store.df$MTenure), digits = 2)
## [1] 0.44

TASK 4k

Use R to construct the following Corrgram based on all variables in the dataset.

library(corrgram)
corrgram(store.df[, names(store.df)], order=FALSE,
         main="Corrgram of store variables",
         lower.panel=panel.shade, upper.panel=panel.pie,
         text.panel=panel.txt)

Qualitatively discuss the managerially relevant correlations - The Managerially relevant correlations are:

  1. Profit is very strongly correlated with sales
  2. MTenure is approximately equally correlated with profit and sales.
  3. CTenure is approximately equally correlated with MTenure, Profit and sales.

TASK 4l - Pearson’s Correlation Tests

Run a Pearson’s Correlation test on the correlation between Profit and MTenure. What is the p-value? p-value = 8.193e-05

cor.test(store.df$Profit, store.df$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

Run a Pearson’s Correlation test on the correlation between Profit and CTenure. What is the p-value? p-value = 0.02562

cor.test(store.df$Profit, store.df$CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

TASK 4m - Regression Analysis

Run a regression of Profit on {MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}.

fit <- lm(Profit ~ MTenure+CTenure+Comp+Pop+PedCount+Res+Hours24+Visibility, data = store.df)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

TASK 4n

List the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05) -

  1. MTenure
  2. CTenure
  3. Comp
  4. Pop
  5. PedCount
  6. Res
  7. Hours24

List the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05) -

  1. Visibility

TASK 4o

  1. What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month?

Ans) If the Manager’s tenure increases by one month, the profit increases by 760.993 unit Rs.

  1. What is expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month?

Ans) If the Crew’s tenure increases by one month, the profit increases by 944.978 unit Rs.

TASK 4p - “Executive Summary”

  1. p- value of the whole model is 5.382e-12 which is much less than 0.05 and therefore, the model as a whole is a good model for the prediction of profit.

  2. The model has passed the F-Test most likely.

  3. According to the Adjusted R-Squared, all the predictor variables taken explain a 59.4% of variance approximately. Since it is around 60%, we can say that the number of variables taken to calculate the effect on Profit is not very less and is just appropriate although in order to increase this percentage, more factors could have been brought into picture to see their effect on Profit.

  4. Since, for the Visibility variable, the p-value is not significant, we fail to reject the Null Hypothesis that the Visibility or the store front rating has a significant effect on Profit. Infact, it does not have any significant effect on Profit.

  5. There is a very positive relationship between (MTenure, Comp and PedCount) variables and Profit.

  6. The relationship between CTenure and Profit although significant is just on the borderline.

  7. The inflence of CTenure is greater than MTenure.

  8. Stores which are open in residential areas (res variable) have more influnce than industrial area stores on Profit.

  9. Stores which are open 24 hours (Hours24 variable) have more influnce than other stores on Profit.