Analysing Case Study, Store24 (A): Managing Employee Retention. 1. Reading the dataset into R
setwd("C:/Users/Abhi/Desktop/Data Analytics/Week 3 Day 1")
store <- read.csv(paste("Store24.csv" , sep = ""))
View(store)
head(store)
## store Sales Profit MTenure CTenure Pop Comp Visibility
## 1 1 1060294 265014 0.00000 24.804930 7535 2.797888 3
## 2 2 1619874 424007 86.22219 6.636550 8630 4.235555 4
## 3 3 1099921 222735 23.88854 5.026694 9695 4.494666 3
## 4 4 1053860 210122 0.00000 5.371663 2797 4.253946 4
## 5 5 1227841 300480 3.87737 6.866530 20335 1.651364 2
## 6 6 1703140 469050 149.93590 11.351130 16926 3.184613 3
## PedCount Res Hours24 CrewSkill MgrSkill ServQual
## 1 3 1 1 3.56 3.150000 86.84327
## 2 3 1 1 3.20 3.556667 94.73510
## 3 3 1 1 3.80 4.116667 78.94776
## 4 2 1 1 2.06 4.100000 100.00000
## 5 5 0 1 3.65 3.588889 68.42164
## 6 4 1 0 3.58 4.605556 94.73510
summary(store)
## store Sales Profit MTenure
## Min. : 1.0 Min. : 699306 Min. :122180 Min. : 0.00
## 1st Qu.:19.5 1st Qu.: 984579 1st Qu.:211004 1st Qu.: 6.67
## Median :38.0 Median :1127332 Median :265014 Median : 24.12
## Mean :38.0 Mean :1205413 Mean :276314 Mean : 45.30
## 3rd Qu.:56.5 3rd Qu.:1362388 3rd Qu.:331314 3rd Qu.: 50.92
## Max. :75.0 Max. :2113089 Max. :518998 Max. :277.99
## CTenure Pop Comp Visibility
## Min. : 0.8871 Min. : 1046 Min. : 1.651 Min. :2.00
## 1st Qu.: 4.3943 1st Qu.: 5616 1st Qu.: 3.151 1st Qu.:3.00
## Median : 7.2115 Median : 8896 Median : 3.629 Median :3.00
## Mean : 13.9315 Mean : 9826 Mean : 3.788 Mean :3.08
## 3rd Qu.: 17.2156 3rd Qu.:14104 3rd Qu.: 4.230 3rd Qu.:4.00
## Max. :114.1519 Max. :26519 Max. :11.128 Max. :5.00
## PedCount Res Hours24 CrewSkill
## Min. :1.00 Min. :0.00 Min. :0.00 Min. :2.060
## 1st Qu.:2.00 1st Qu.:1.00 1st Qu.:1.00 1st Qu.:3.225
## Median :3.00 Median :1.00 Median :1.00 Median :3.500
## Mean :2.96 Mean :0.96 Mean :0.84 Mean :3.457
## 3rd Qu.:4.00 3rd Qu.:1.00 3rd Qu.:1.00 3rd Qu.:3.655
## Max. :5.00 Max. :1.00 Max. :1.00 Max. :4.640
## MgrSkill ServQual
## Min. :2.957 Min. : 57.90
## 1st Qu.:3.344 1st Qu.: 78.95
## Median :3.589 Median : 89.47
## Mean :3.638 Mean : 87.15
## 3rd Qu.:3.925 3rd Qu.: 99.90
## Max. :4.622 Max. :100.00
mean(store$Profit)
## [1] 276313.6
sd(store$Profit)
## [1] 89404.08
Average profit is $ 276313.6 with standard deviation of $ 89404.08. 4. Mean and standard deviation of MTenure.
mean(store$MTenure)
## [1] 45.29644
sd(store$MTenure)
## [1] 57.67155
Mean of Manager Tenure is 45.29 with standard deviation of 57.67 months.
mean(store$CTenure)
## [1] 13.9315
sd(store$CTenure)
## [1] 17.69752
6a. Sorting and Subsetting data in R: Top 10
lp<- store[order(-store$Profit), ]
lp[1:10, 1:5]
## store Sales Profit MTenure CTenure
## 74 74 1782957 518998 171.09720 29.519510
## 7 7 1809256 476355 62.53080 7.326488
## 9 9 2113089 474725 108.99350 6.061602
## 6 6 1703140 469050 149.93590 11.351130
## 44 44 1807740 439781 182.23640 114.151900
## 2 2 1619874 424007 86.22219 6.636550
## 45 45 1602362 410149 47.64565 9.166325
## 18 18 1704826 394039 239.96980 33.774130
## 11 11 1583446 389886 44.81977 2.036961
## 47 47 1665657 387853 12.84790 6.636550
6b. Sorting and Subsetting data in R: Bottom 10
lp<- store[order(store$Profit), ]
lp[1:10, 1:5]
## store Sales Profit MTenure CTenure
## 57 57 699306 122180 24.3485700 2.956879
## 66 66 879581 146058 115.2039000 3.876797
## 41 41 744211 147327 14.9180200 11.926080
## 55 55 925744 147672 6.6703910 18.365500
## 32 32 828918 149033 36.0792600 6.636550
## 13 13 857843 152513 0.6571813 1.577002
## 54 54 811190 159792 6.6703910 3.876797
## 52 52 1073008 169201 24.1185600 3.416838
## 61 61 716589 177046 21.8184200 13.305950
## 37 37 1202917 187765 23.1985000 1.347023
library(car)
scatterplot(Profit~MTenure, data=store,
xlab="MTenure", ylab="Profit",
main="Scatterplot of MTenure v/s Profit")
8. A scatter plot of Profit vs. CTenure.
scatterplot(Profit~CTenure, data=store,
xlab="CTenure", ylab="Profit",
main="Scatterplot of CTenure v/s Profit")
options(digits=2)
cor(store)
## store Sales Profit MTenure CTenure Pop Comp Visibility
## store 1.000 -0.227 -0.200 -0.057 0.0199 -0.2894 0.032 -0.026
## Sales -0.227 1.000 0.924 0.455 0.2543 0.4035 -0.235 0.131
## Profit -0.200 0.924 1.000 0.439 0.2577 0.4306 -0.335 0.136
## MTenure -0.057 0.455 0.439 1.000 0.2434 -0.0609 0.181 0.157
## CTenure 0.020 0.254 0.258 0.243 1.0000 -0.0015 -0.070 0.067
## Pop -0.289 0.403 0.431 -0.061 -0.0015 1.0000 -0.268 -0.050
## Comp 0.032 -0.235 -0.335 0.181 -0.0703 -0.2683 1.000 0.028
## Visibility -0.026 0.131 0.136 0.157 0.0665 -0.0500 0.028 1.000
## PedCount -0.221 0.424 0.450 0.062 -0.0841 0.6076 -0.146 -0.141
## Res -0.031 -0.167 -0.159 -0.062 -0.3403 -0.2369 0.219 0.022
## Hours24 0.027 0.063 -0.026 -0.165 0.0729 -0.2218 0.130 0.047
## CrewSkill 0.049 0.164 0.160 0.102 0.2572 0.2828 -0.042 -0.197
## MgrSkill -0.072 0.312 0.323 0.230 0.1240 0.0836 0.224 0.073
## ServQual -0.322 0.386 0.362 0.182 0.0812 0.1239 0.018 0.210
## PedCount Res Hours24 CrewSkill MgrSkill ServQual
## store -0.2212 -0.031 0.027 0.049 -0.072 -0.3225
## Sales 0.4239 -0.167 0.063 0.164 0.312 0.3864
## Profit 0.4502 -0.159 -0.026 0.160 0.323 0.3625
## MTenure 0.0620 -0.062 -0.165 0.102 0.230 0.1817
## CTenure -0.0841 -0.340 0.073 0.257 0.124 0.0812
## Pop 0.6076 -0.237 -0.222 0.283 0.084 0.1239
## Comp -0.1463 0.219 0.130 -0.042 0.224 0.0181
## Visibility -0.1411 0.022 0.047 -0.197 0.073 0.2099
## PedCount 1.0000 -0.284 -0.276 0.214 0.087 -0.0054
## Res -0.2844 1.000 -0.089 -0.153 -0.032 0.0908
## Hours24 -0.2760 -0.089 1.000 0.105 -0.039 0.0583
## CrewSkill 0.2137 -0.153 0.105 1.000 -0.021 -0.0335
## MgrSkill 0.0875 -0.032 -0.039 -0.021 1.000 0.3567
## ServQual -0.0054 0.091 0.058 -0.034 0.357 1.0000
cor(store$Profit, store$MTenure)
## [1] 0.44
cor(store$Profit, store$CTenure)
## [1] 0.26
library(corrgram)
corrogram<-corrgram(store,order=TRUE, lower.panel = panel.shade, upper.panel = panel.shade, text.panel = panel.txt, main="Corrgram of Store dataset")
13. How the Profit is correlated with the other variables Profit has positive correlation with MTenure, CTenure, Sales, Pop, Comp, Visibility, ServQual, CrewSkill and Profit is negatively correlated with Comp, Hours24, store and Res. Also, manager’s tenure has negative correlation with longer working hours, which could be source of demotivation for continuing their job. Sales are also affected by no. of competitors near the store as more competitors will cause reduction in sales and utlimately profit. Profit is positively affected by Crew’s Skill and Manager’s Skill as more the customers are satisfied due to efficient customer service, more returning customers the store has.
cor.test(store$Profit, store$MTenure, method = "pearson")
##
## Pearson's product-moment correlation
##
## data: store$Profit and store$MTenure
## t = 4, df = 70, p-value = 8e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.24 0.61
## sample estimates:
## cor
## 0.44
cor.test(store$Profit, store$CTenure, method = "pearson")
##
## Pearson's product-moment correlation
##
## data: store$Profit and store$CTenure
## t = 2, df = 70, p-value = 0.03
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.033 0.458
## sample estimates:
## cor
## 0.26
rp<- lm(Profit~MTenure+CTenure+Comp+Pop+PedCount+Res+Hours24+Visibility, data=store)
summary(rp)
##
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount +
## Res + Hours24 + Visibility, data = store)
##
## Residuals:
## Min 1Q Median 3Q Max
## -105789 -35946 -7069 33780 112390
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7610.04 66821.99 0.11 0.90967
## MTenure 760.99 127.09 5.99 9.7e-08 ***
## CTenure 944.98 421.69 2.24 0.02840 *
## Comp -25286.89 5491.94 -4.60 1.9e-05 ***
## Pop 3.67 1.47 2.50 0.01489 *
## PedCount 34087.36 9073.20 3.76 0.00037 ***
## Res 91584.68 39231.28 2.33 0.02262 *
## Hours24 63233.31 19641.11 3.22 0.00199 **
## Visibility 12625.45 9087.62 1.39 0.16941
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 57000 on 66 degrees of freedom
## Multiple R-squared: 0.638, Adjusted R-squared: 0.594
## F-statistic: 14.5 on 8 and 66 DF, p-value: 5.38e-12
MTenure, CTenure, Comp, Pop, PedCount, Res, Hours24
List the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05). Visibility
What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month?
If the Manager’s tenure is increased by a month, the profit changes by $760.99.
If the Crew’s tenure is increased by a month, the profit changes by $944.98.
From correlation matrix, we can conclude that profit has positive correlation with the manager tenure, Population, Pedestrian Count. Therefor, store performance is strongly affected by these variables. The Performance of store also depends on the ‘location factors’ like Population and Pedestrian count. Service quality is also one domain where management has to rethink on service blueprint So, the company should surely take measures of implementing new models of service delivary that will add value to the customers. With the probability from Pearson’s correlation test, the crew tenure surely indulges in profit margin. One can also look at the linear regression with profit (response variable), with others as predictor variables(MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility).
So increasing in the management tenure and crew tenure will have significant positive effect on the financial performance.