TASK 4: Analysis of the Case Store24 (A): Managing Employee Retention

Task 4a: Important questions that matter:

  1. Where is the store located?
  2. How good is the work culture maintained at the store?
  3. How can the Manager or employee tenure be increased?
  4. How often do we make the employees learn and make them feel satisfied with their learning and professional development?
  5. How often are the employees rewarded?
  6. How good is our relationship with the customers?
  7. Is the ambience surrounding the store well crowded?
  8. How good are we promoting our company?
  9. Are we revising the rules and benefits for being a part of the company?
  10. What are the compensations provided for retaining employees?

Task 4b. Done

Task 4c. Loading Store24.csv in R

setwd("c:/office/Week 3 Day 1")
store.df <- read.csv(paste("Store24.csv"), sep=",")
summary(store.df)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00

Task 4d. Use R to measure the mean and standard deviation of Profit.

library(psych)
describe(store.df$Profit)
##    vars  n     mean       sd median  trimmed   mad    min    max  range
## X1    1 75 276313.6 89404.08 265014 270260.3 90532 122180 518998 396818
##    skew kurtosis       se
## X1 0.62    -0.21 10323.49

Use R to measure the mean and standard deviation of MTenure

describe(store.df$MTenure)
##    vars  n mean    sd median trimmed   mad min    max  range skew kurtosis
## X1    1 75 45.3 57.67  24.12   33.58 29.67   0 277.99 277.99 2.01      3.9
##      se
## X1 6.66

Use R to measure the mean and standard deviation of CTenure

describe(store.df$CTenure)
##    vars  n  mean   sd median trimmed  mad  min    max  range skew kurtosis
## X1    1 75 13.93 17.7   7.21    10.6 6.14 0.89 114.15 113.26 3.52       15
##      se
## X1 2.04

Task 4e. Sorting and Subsetting in R

attach(mtcars)
View(mtcars)
newdata <-mtcars[order(mpg),]
View(newdata)
newdata <-mtcars[order(-mpg),]
View(newdata)
detach(mtcars)

Task 4f: 4.Top 10 most profitable stores

Profitable_stores <-store.df[order(-store.df$Profit),]
Profitable_stores[1:10,]
##    store   Sales Profit   MTenure    CTenure   Pop     Comp Visibility
## 74    74 1782957 518998 171.09720  29.519510 10913 2.319850          3
## 7      7 1809256 476355  62.53080   7.326488 17754 3.377900          2
## 9      9 2113089 474725 108.99350   6.061602 26519 2.637630          2
## 6      6 1703140 469050 149.93590  11.351130 16926 3.184613          3
## 44    44 1807740 439781 182.23640 114.151900 20624 3.628561          3
## 2      2 1619874 424007  86.22219   6.636550  8630 4.235555          4
## 45    45 1602362 410149  47.64565   9.166325 17808 3.472609          5
## 18    18 1704826 394039 239.96980  33.774130  3807 3.994713          5
## 11    11 1583446 389886  44.81977   2.036961 21550 3.272398          2
## 47    47 1665657 387853  12.84790   6.636550 23623 2.422707          2
##    PedCount Res Hours24 CrewSkill MgrSkill  ServQual
## 74        4   1       0      3.50 4.405556  94.73878
## 7         5   1       1      3.94 4.100000  81.57837
## 9         4   1       1      3.22 3.583333 100.00000
## 6         4   1       0      3.58 4.605556  94.73510
## 44        4   0       1      4.06 4.172222  86.84327
## 2         3   1       1      3.20 3.556667  94.73510
## 45        3   1       1      3.58 4.622222 100.00000
## 18        3   1       1      3.18 3.866667  97.36939
## 11        5   1       1      3.43 3.200000 100.00000
## 47        5   1       1      4.23 3.950000  99.80105
View(Profitable_stores)
  1. Least 10 profitable stores
Profitable_stores <-store.df[order(store.df$Profit),]
Profitable_stores[1:10,]
##    store   Sales Profit     MTenure   CTenure   Pop     Comp Visibility
## 57    57  699306 122180  24.3485700  2.956879  3642 2.973376          3
## 66    66  879581 146058 115.2039000  3.876797  1046 6.569790          2
## 41    41  744211 147327  14.9180200 11.926080  9701 4.364600          2
## 55    55  925744 147672   6.6703910 18.365500 10532 6.389294          4
## 32    32  828918 149033  36.0792600  6.636550  9697 4.641468          3
## 13    13  857843 152513   0.6571813  1.577002 14186 4.435671          3
## 54    54  811190 159792   6.6703910  3.876797  3747 3.756011          3
## 52    52 1073008 169201  24.1185600  3.416838 14859 6.585143          3
## 61    61  716589 177046  21.8184200 13.305950  3014 3.263994          3
## 37    37 1202917 187765  23.1985000  1.347023  8870 4.491863          3
##    PedCount Res Hours24 CrewSkill MgrSkill ServQual
## 57        2   1       1      3.35 2.956667 84.21266
## 66        3   1       1      4.03 3.673333 80.26675
## 41        3   1       1      3.03 3.672222 81.13993
## 55        3   1       1      3.49 3.477778 76.31346
## 32        3   1       0      3.28 3.550000 73.68654
## 13        2   1       1      4.10 3.000000 76.30609
## 54        2   1       1      3.08 3.933333 65.78734
## 52        3   1       1      3.83 3.833333 94.73510
## 61        1   1       1      3.07 3.126667 73.68654
## 37        3   1       1      3.38 4.016667 73.68654
View(Profitable_stores)

Task 4g. scatter plots of Profit vs MTenure

plot( Profitable_stores$MTenure,Profitable_stores$Profit, main="ScatterPlot of Profit Vs MTenure",xlab= "MTenure", ylab="Profit",)

Task 4h:scatter plot of Profit vs. CTenure.

plot( Profitable_stores$CTenure,Profitable_stores$Profit, main="ScatterPlot of Profit Vs CTenure",xlab= "CTenure", ylab="Profit",)

Task 4i:

Use R to construct a Correlation Matrix for all the variables in the datase

round(cor(store.df),2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00

Task 4j: Correlation 9. R to measure the correlation between Profit and MTenure. (Display the numbers up to 2 Decimal places)

round(cor(store.df$Profit, store.df$MTenure), 2)
## [1] 0.44
  1. Use R to measure the correlation between Profit and CTenure. (Display the numbers up to 2 Decimal places)
round(cor(store.df$Profit, store.df$CTenure), 2)
## [1] 0.26

Task 4k.

11.Use R to construct the following Corrgram based on all variables in the dataset.

library("corrgram")
corrgram(store.df, main="Corrgram of Store Variables")

TASK 4l - Pearson’s Correlation Tests

Run a Pearson’s Correlation test on the correlation between Profit and MTenure. What is the p-value?

cor.test(store.df$Profit, store.df$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

p value = 8.193e-05

  1. Run a Pearson’s Correlation test on the correlation between Profit and CTenure. What is the p-value?
cor.test(store.df$Profit, store.df$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

p- value= 8.193e-05

TASK 3m - Regression Analysis

Run a regression of Profit on {MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}.

store<- lm(store.df$Profit~store.df$MTenure+store.df$CTenure+store.df$Comp+store.df$Pop+store.df$PedCount+store.df$Res+store.df$Hours24+store.df$Visibility)
summary(store)
## 
## Call:
## lm(formula = store.df$Profit ~ store.df$MTenure + store.df$CTenure + 
##     store.df$Comp + store.df$Pop + store.df$PedCount + store.df$Res + 
##     store.df$Hours24 + store.df$Visibility)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           7610.041  66821.994   0.114 0.909674    
## store.df$MTenure       760.993    127.086   5.988 9.72e-08 ***
## store.df$CTenure       944.978    421.687   2.241 0.028400 *  
## store.df$Comp       -25286.887   5491.937  -4.604 1.94e-05 ***
## store.df$Pop             3.667      1.466   2.501 0.014890 *  
## store.df$PedCount    34087.359   9073.196   3.757 0.000366 ***
## store.df$Res         91584.675  39231.283   2.334 0.022623 *  
## store.df$Hours24     63233.307  19641.114   3.219 0.001994 ** 
## store.df$Visibility  12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

Task 4o. 17. What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month?

predict(store)
##        1        2        3        4        5        6        7        8 
## 282884.6 311616.6 247387.2 188867.1 308773.0 379779.2 392304.9 371985.2 
##        9       10       11       12       13       14       15       16 
## 443237.0 300474.6 390414.7 420779.0 210319.6 268639.8 279296.3 202381.0 
##       17       18       19       20       21       22       23       24 
## 352534.2 455293.3 256081.6 275088.3 277490.0 271166.4 309003.2 214340.6 
##       25       26       27       28       29       30       31       32 
## 246051.2 219299.0 258929.7 280699.0 210844.3 260034.8 197082.6 191247.4 
##       33       34       35       36       37       38       39       40 
## 207234.6 370486.2 318628.6 232328.1 240430.8 199026.7 260630.9 173787.2 
##       41       42       43       44       45       46       47       48 
## 237766.0 277755.6 375932.0 475485.8 350220.8 279391.3 399517.8 208750.4 
##       49       50       51       52       53       54       55       56 
## 215972.9 307812.7 282907.8 212113.7 252711.1 195979.6 214674.3 167063.9 
##       57       58       59       60       61       62       63       64 
## 227968.7 218550.3 265067.8 331875.7 192084.1 218925.7 238526.9 318618.1 
##       65       66       67       68       69       70       71       72 
## 293397.2 218979.5 261546.3 240964.4 280082.4 282110.4 205893.0 262434.7 
##       73       74       75 
## 269862.0 412871.4 252828.2