1. Reading the dataset

setwd("C:/Users/CJ With HP/Desktop/IIM Lucknow/Datasets")
store24.df <- read.csv(paste("Store24.csv",sep = ""))
attach(store24.df)

2. Using R, get the summary statistics of the data.

summary(store24.df)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00

3. Use R to measure the mean and standard deviation of Profit.

mean(Profit)
## [1] 276313.6
sd(Profit)
## [1] 89404.08

4. Use R to measure the mean and standard deviation of MTenure.

mean(MTenure)
## [1] 45.29644
sd(MTenure)
## [1] 57.67155

5. Use R to measure the mean and standard deviation of CTenure.

mean(CTenure)
## [1] 13.9315
sd(CTenure)
## [1] 17.69752

6. Use R to print the {StoreID, Sales, Profit, MTenure, CTenure} of the top 10 most profitable stores.

newdata <- store24.df[order(-Profit),]
datatop<-newdata[1:5,1:5]

7. Use R to print the {StoreID, Sales, Profit, MTenure, CTenure} of the bottom 10 least profitable stores.

newdata <- store24.df[order(Profit),]
databottom <- newdata[1:5,1:5]

8. Use R to draw a scatter plot of Profit vs. MTenure.

plot(MTenure,Profit,main="Profit V/s MTenure",xlab = "MTenure",ylab = "Profit",xlim=c(0,300),cex=0.8)
abline(lm(Profit~MTenure),col="red")

9. Use R to draw a scatter plot of Profit vs. CTenure.

plot(CTenure,Profit,main="Profit V/s CTenure",xlab = "MTenure",ylab = "Profit",xlim=c(0,300),cex=0.8)
abline(lm(Profit~CTenure),col="red")

#10. Use R to construct a Correlation Matrix for all the variables in the dataset. (Display the numbers up to 2 Decimal places)

round(cor(store24.df[,c(2:13)]),2)
##            Sales Profit MTenure CTenure   Pop  Comp Visibility PedCount
## Sales       1.00   0.92    0.45    0.25  0.40 -0.24       0.13     0.42
## Profit      0.92   1.00    0.44    0.26  0.43 -0.33       0.14     0.45
## MTenure     0.45   0.44    1.00    0.24 -0.06  0.18       0.16     0.06
## CTenure     0.25   0.26    0.24    1.00  0.00 -0.07       0.07    -0.08
## Pop         0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05     0.61
## Comp       -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03    -0.15
## Visibility  0.13   0.14    0.16    0.07 -0.05  0.03       1.00    -0.14
## PedCount    0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14     1.00
## Res        -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02    -0.28
## Hours24     0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05    -0.28
## CrewSkill   0.16   0.16    0.10    0.26  0.28 -0.04      -0.20     0.21
## MgrSkill    0.31   0.32    0.23    0.12  0.08  0.22       0.07     0.09
##              Res Hours24 CrewSkill MgrSkill
## Sales      -0.17    0.06      0.16     0.31
## Profit     -0.16   -0.03      0.16     0.32
## MTenure    -0.06   -0.17      0.10     0.23
## CTenure    -0.34    0.07      0.26     0.12
## Pop        -0.24   -0.22      0.28     0.08
## Comp        0.22    0.13     -0.04     0.22
## Visibility  0.02    0.05     -0.20     0.07
## PedCount   -0.28   -0.28      0.21     0.09
## Res         1.00   -0.09     -0.15    -0.03
## Hours24    -0.09    1.00      0.11    -0.04
## CrewSkill  -0.15    0.11      1.00    -0.02
## MgrSkill   -0.03   -0.04     -0.02     1.00

11. Use R to measure the correlation between Profit and MTenure. (Display the numbers up to 2 Decimal places)

round(cor(Profit,MTenure),2)
## [1] 0.44
round(cor(Profit,CTenure),2)
## [1] 0.26

12. Use R to measure the correlation between Profit and CTenure. (Display the numbers up to 2 Decimal places)

round(cor(Profit,CTenure),2)
## [1] 0.26

13. Use R to construct the following Corrgram based on all variables in the dataset.

library(corrgram)
corrgram(store24.df, order=TRUE, lower.panel=panel.shade,
         upper.panel=panel.pie, text.panel=panel.txt,
         main="Corrgram of store variables")

#14. Run a Pearson’s Correlation test on the correlation between Profit and MTenure. What is the p-value?

cor.test(Profit,MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  Profit and MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

15. Run a Pearson’s Correlation test on the correlation between Profit and CTenure. What is the p-value?

cor.test(Profit,CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  Profit and CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

16. Run a regression of Profit on {MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}.

fit<- lm(Profit ~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

Statistically Significant -

MTenure,Comp,PedCount,Res,Hours,CTenure,Pop

Not Significant -

Visibility

Expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month = 760.993

Expected change in the Profit at a store, if the Customer’s tenure i.e. number of months of experience with Store24, increases by one month = 944.978

Executive Summary:

The scatterplot between Profit and MTenure exhibits a cluster in the range (0 -50) months period. As the experience increases in this range, the profit increases simultaneously. Even at the outliers, more the Tenure of manager, better the profits. The relation between Crew Tenure and Profit is moderately significant as seen by a moderate correlation value.The three site location parameters viz. Number of competitors per 10,000 people within a ½ mile radius(Comp),pedestrian foot traffic volume(PedCount), Indicator for open 24 hours or not(Hours 24) are much significant in decieding the profits. Lower number of competitors, higher trafic, and 24 hours availability are statiscally significant in improving the profits. However, the other 2 site location parameters viz. Population within a ½ mile radius, Indicator for located in residential vs. industrial area, have moderate statistical significance in decieding the overall profit. Visibility of the shop is not statistically significant at all.

The manager must consider spending on wages, bonus, and better training to enhance Manager’s and crew’s tenure, which would result in better profits. Simulataneously, if the store is available for 24 hours, it would have improved profits, as shown by the regression analysis.