This document gives Analysis of the Case Store24 (A): Managing Employee Retention.
setwd("~/Desktop/Data Analytics Internship/Employee Retention")
store <- read.csv(paste("Store24.csv" , sep = ""))
View(store)
library(psych)
describe(store)
## vars n mean sd median trimmed mad
## store 1 75 38.00 21.79 38.00 38.00 28.17
## Sales 2 75 1205413.12 304531.31 1127332.00 1182031.25 288422.04
## Profit 3 75 276313.61 89404.08 265014.00 270260.34 90532.00
## MTenure 4 75 45.30 57.67 24.12 33.58 29.67
## CTenure 5 75 13.93 17.70 7.21 10.60 6.14
## Pop 6 75 9825.59 5911.67 8896.00 9366.07 7266.22
## Comp 7 75 3.79 1.31 3.63 3.66 0.82
## Visibility 8 75 3.08 0.75 3.00 3.07 0.00
## PedCount 9 75 2.96 0.99 3.00 2.97 1.48
## Res 10 75 0.96 0.20 1.00 1.00 0.00
## Hours24 11 75 0.84 0.37 1.00 0.92 0.00
## CrewSkill 12 75 3.46 0.41 3.50 3.47 0.34
## MgrSkill 13 75 3.64 0.41 3.59 3.62 0.45
## ServQual 14 75 87.15 12.61 89.47 88.62 15.61
## min max range skew kurtosis se
## store 1.00 75.00 74.00 0.00 -1.25 2.52
## Sales 699306.00 2113089.00 1413783.00 0.71 -0.09 35164.25
## Profit 122180.00 518998.00 396818.00 0.62 -0.21 10323.49
## MTenure 0.00 277.99 277.99 2.01 3.90 6.66
## CTenure 0.89 114.15 113.26 3.52 15.00 2.04
## Pop 1046.00 26519.00 25473.00 0.62 -0.23 682.62
## Comp 1.65 11.13 9.48 2.48 11.31 0.15
## Visibility 2.00 5.00 3.00 0.25 -0.38 0.09
## PedCount 1.00 5.00 4.00 0.00 -0.52 0.11
## Res 0.00 1.00 1.00 -4.60 19.43 0.02
## Hours24 0.00 1.00 1.00 -1.82 1.32 0.04
## CrewSkill 2.06 4.64 2.58 -0.43 1.64 0.05
## MgrSkill 2.96 4.62 1.67 0.27 -0.53 0.05
## ServQual 57.90 100.00 42.10 -0.66 -0.72 1.46
mean(store$Profit)
## [1] 276313.6
sd(store$Profit)
## [1] 89404.08
mean(store$MTenure)
## [1] 45.29644
sd(store$MTenure)
## [1] 57.67155
mean(store$CTenure)
## [1] 13.9315
sd(store$CTenure)
## [1] 17.69752
attach(mtcars)
View(mtcars)
newdata <- mtcars[order(mpg),] # sort by mpg (ascending)
View(newdata)
newdata[1:5,] # see the first 5 rows
## mpg cyl disp hp drat wt qsec vs am gear carb
## Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4
## Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4
## Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4
## Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
newdata <- mtcars[order(-mpg),] # sort by mpg (descending)
View(newdata)
detach(mtcars)
mp<- store[order(store$Profit), ]
mp[1:10, 1:5]
## store Sales Profit MTenure CTenure
## 57 57 699306 122180 24.3485700 2.956879
## 66 66 879581 146058 115.2039000 3.876797
## 41 41 744211 147327 14.9180200 11.926080
## 55 55 925744 147672 6.6703910 18.365500
## 32 32 828918 149033 36.0792600 6.636550
## 13 13 857843 152513 0.6571813 1.577002
## 54 54 811190 159792 6.6703910 3.876797
## 52 52 1073008 169201 24.1185600 3.416838
## 61 61 716589 177046 21.8184200 13.305950
## 37 37 1202917 187765 23.1985000 1.347023
lp<- store[order(-store$Profit), ]
lp[1:10, 1:5]
## store Sales Profit MTenure CTenure
## 74 74 1782957 518998 171.09720 29.519510
## 7 7 1809256 476355 62.53080 7.326488
## 9 9 2113089 474725 108.99350 6.061602
## 6 6 1703140 469050 149.93590 11.351130
## 44 44 1807740 439781 182.23640 114.151900
## 2 2 1619874 424007 86.22219 6.636550
## 45 45 1602362 410149 47.64565 9.166325
## 18 18 1704826 394039 239.96980 33.774130
## 11 11 1583446 389886 44.81977 2.036961
## 47 47 1665657 387853 12.84790 6.636550
Draw a scatter plot of Profit vs. MTenure.
library(car)
##
## Attaching package: 'car'
## The following object is masked from 'package:psych':
##
## logit
scatterplot(Profit~MTenure, data=store,
xlab="MTenure", ylab="Profit",
main="Scatterplot of MTenure v/s Profit")
Draw a scatter plot of Profit vs. CTenure.
scatterplot(Profit~CTenure, data=store,
xlab="CTenure", ylab="Profit",
main="Scatterplot of CTenure v/s Profit")
Construct a Correlation Matrix for all the variables in the dataset. (Display the numbers up to 2 Decimal places)
options(digits=2)
cor(store)
## store Sales Profit MTenure CTenure Pop Comp Visibility
## store 1.000 -0.227 -0.200 -0.057 0.0199 -0.2894 0.032 -0.026
## Sales -0.227 1.000 0.924 0.455 0.2543 0.4035 -0.235 0.131
## Profit -0.200 0.924 1.000 0.439 0.2577 0.4306 -0.335 0.136
## MTenure -0.057 0.455 0.439 1.000 0.2434 -0.0609 0.181 0.157
## CTenure 0.020 0.254 0.258 0.243 1.0000 -0.0015 -0.070 0.067
## Pop -0.289 0.403 0.431 -0.061 -0.0015 1.0000 -0.268 -0.050
## Comp 0.032 -0.235 -0.335 0.181 -0.0703 -0.2683 1.000 0.028
## Visibility -0.026 0.131 0.136 0.157 0.0665 -0.0500 0.028 1.000
## PedCount -0.221 0.424 0.450 0.062 -0.0841 0.6076 -0.146 -0.141
## Res -0.031 -0.167 -0.159 -0.062 -0.3403 -0.2369 0.219 0.022
## Hours24 0.027 0.063 -0.026 -0.165 0.0729 -0.2218 0.130 0.047
## CrewSkill 0.049 0.164 0.160 0.102 0.2572 0.2828 -0.042 -0.197
## MgrSkill -0.072 0.312 0.323 0.230 0.1240 0.0836 0.224 0.073
## ServQual -0.322 0.386 0.362 0.182 0.0812 0.1239 0.018 0.210
## PedCount Res Hours24 CrewSkill MgrSkill ServQual
## store -0.2212 -0.031 0.027 0.049 -0.072 -0.3225
## Sales 0.4239 -0.167 0.063 0.164 0.312 0.3864
## Profit 0.4502 -0.159 -0.026 0.160 0.323 0.3625
## MTenure 0.0620 -0.062 -0.165 0.102 0.230 0.1817
## CTenure -0.0841 -0.340 0.073 0.257 0.124 0.0812
## Pop 0.6076 -0.237 -0.222 0.283 0.084 0.1239
## Comp -0.1463 0.219 0.130 -0.042 0.224 0.0181
## Visibility -0.1411 0.022 0.047 -0.197 0.073 0.2099
## PedCount 1.0000 -0.284 -0.276 0.214 0.087 -0.0054
## Res -0.2844 1.000 -0.089 -0.153 -0.032 0.0908
## Hours24 -0.2760 -0.089 1.000 0.105 -0.039 0.0583
## CrewSkill 0.2137 -0.153 0.105 1.000 -0.021 -0.0335
## MgrSkill 0.0875 -0.032 -0.039 -0.021 1.000 0.3567
## ServQual -0.0054 0.091 0.058 -0.034 0.357 1.0000
cor(store$Profit, store$MTenure)
## [1] 0.44
cor(store$Profit, store$CTenure)
## [1] 0.26
Construct the Corrgram based on all variables in the dataset.
library(corrgram)
## Warning: replacing previous import by 'magrittr::%>%' when loading
## 'dendextend'
corrgram(store,order=TRUE, lower.panel = panel.shade,
upper.panel = panel.pie, text.panel = panel.txt,
main="Corrgram of store24 dataset")
cor.test(store$Profit, store$MTenure, method = "pearson")
##
## Pearson's product-moment correlation
##
## data: store$Profit and store$MTenure
## t = 4, df = 70, p-value = 8e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.24 0.61
## sample estimates:
## cor
## 0.44
P-value : 8e-05
cor.test(store$Profit, store$CTenure, method = "pearson")
##
## Pearson's product-moment correlation
##
## data: store$Profit and store$CTenure
## t = 2, df = 70, p-value = 0.03
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.033 0.458
## sample estimates:
## cor
## 0.26
P-value: 0.03
Regression of Profit on {MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}.
rp<- lm(Profit~MTenure+CTenure+Comp+Pop+PedCount+Res+Hours24+Visibility, data=store)
summary(rp)
##
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount +
## Res + Hours24 + Visibility, data = store)
##
## Residuals:
## Min 1Q Median 3Q Max
## -105789 -35946 -7069 33780 112390
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7610.04 66821.99 0.11 0.90967
## MTenure 760.99 127.09 5.99 9.7e-08 ***
## CTenure 944.98 421.69 2.24 0.02840 *
## Comp -25286.89 5491.94 -4.60 1.9e-05 ***
## Pop 3.67 1.47 2.50 0.01489 *
## PedCount 34087.36 9073.20 3.76 0.00037 ***
## Res 91584.68 39231.28 2.33 0.02262 *
## Hours24 63233.31 19641.11 3.22 0.00199 **
## Visibility 12625.45 9087.62 1.39 0.16941
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 57000 on 66 degrees of freedom
## Multiple R-squared: 0.638, Adjusted R-squared: 0.594
## F-statistic: 14.5 on 8 and 66 DF, p-value: 5.38e-12
MTenure, CTenure, Comp, Pop, PedCount, Res, Hours24
Visibility
From the above analysis, we can decipher that if the Manager’s tenure is increased by a month, the profit changes by $760.99.
From the above analysis, we can decipher that if the Crew’s tenure is increased by a month, the profit changes by $944.98.
Looking at the correlation stats, we can deduce that profit has more correlation with the management tenure (0.44), Population (0.43), Pedestrian Count (0.45). So, definitely we can say that the financial Performance of the Store24 (A) is affected by the managerial tenure. The Performance also depends on the ‘site location factors’ like Population and Pedestrian count.
With the probability (p<0.05) from Pearson’s correlation test, the crew tenure surely indulges in profit margin.
One can also look at the linear regression with profit (response variable), with others as predictor variables(MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility).
So increasing in the management tenure and crew tenure can surely boost the financial performance.
Also the company has to consider the population criteria, as it sees more profit margin. So, they have to consider this site location factors, in case of a relocation. Management skill (0.32) and Service Quality (0.36) also puts a load on profits to certain extent. So, the company should surely take measures of implement new career development programs, thereby improving the managerial skills.