summary(store.df)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00
library(psych)
describe(store.df)
##            vars  n       mean        sd     median    trimmed       mad
## store         1 75      38.00     21.79      38.00      38.00     28.17
## Sales         2 75 1205413.12 304531.31 1127332.00 1182031.25 288422.04
## Profit        3 75  276313.61  89404.08  265014.00  270260.34  90532.00
## MTenure       4 75      45.30     57.67      24.12      33.58     29.67
## CTenure       5 75      13.93     17.70       7.21      10.60      6.14
## Pop           6 75    9825.59   5911.67    8896.00    9366.07   7266.22
## Comp          7 75       3.79      1.31       3.63       3.66      0.82
## Visibility    8 75       3.08      0.75       3.00       3.07      0.00
## PedCount      9 75       2.96      0.99       3.00       2.97      1.48
## Res          10 75       0.96      0.20       1.00       1.00      0.00
## Hours24      11 75       0.84      0.37       1.00       0.92      0.00
## CrewSkill    12 75       3.46      0.41       3.50       3.47      0.34
## MgrSkill     13 75       3.64      0.41       3.59       3.62      0.45
## ServQual     14 75      87.15     12.61      89.47      88.62     15.61
##                  min        max      range  skew kurtosis       se
## store           1.00      75.00      74.00  0.00    -1.25     2.52
## Sales      699306.00 2113089.00 1413783.00  0.71    -0.09 35164.25
## Profit     122180.00  518998.00  396818.00  0.62    -0.21 10323.49
## MTenure         0.00     277.99     277.99  2.01     3.90     6.66
## CTenure         0.89     114.15     113.26  3.52    15.00     2.04
## Pop          1046.00   26519.00   25473.00  0.62    -0.23   682.62
## Comp            1.65      11.13       9.48  2.48    11.31     0.15
## Visibility      2.00       5.00       3.00  0.25    -0.38     0.09
## PedCount        1.00       5.00       4.00  0.00    -0.52     0.11
## Res             0.00       1.00       1.00 -4.60    19.43     0.02
## Hours24         0.00       1.00       1.00 -1.82     1.32     0.04
## CrewSkill       2.06       4.64       2.58 -0.43     1.64     0.05
## MgrSkill        2.96       4.62       1.67  0.27    -0.53     0.05
## ServQual       57.90     100.00      42.10 -0.66    -0.72     1.46

Task 4d

  1. Measure the mean and standard deviation of Profit
mean(store.df$Profit)
## [1] 276313.6
sd(store.df$Profit)
## [1] 89404.08
  1. Measure the mean and standard deviation of MTenure
mean(store.df$MTenure)
## [1] 45.29644
sd(store.df$MTenure)
## [1] 57.67155
  1. Measure the mean and standard deviation of CTenure
mean(store.df$CTenure)
## [1] 13.9315
sd(store.df$CTenure)
## [1] 17.69752

TASK 4f

  1. Print the {StoreID, Sales, Profit, MTenure, CTenure} of the top 10 most profitable stores
attach(store.df)
newdata <- store.df[order(-Profit),]
View(newdata)
newdata[1:10,c("store","Sales","Profit","MTenure","CTenure")]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550
  1. Print the {StoreID, Sales, Profit, MTenure, CTenure} of the bottom 10 least profitable stores
attach(store.df)
## The following objects are masked from store.df (pos = 3):
## 
##     Comp, CrewSkill, CTenure, Hours24, MgrSkill, MTenure,
##     PedCount, Pop, Profit, Res, Sales, ServQual, store, Visibility
newdata <- store.df[order(Profit),]
View(newdata)
newdata[10:1,c("store","Sales","Profit","MTenure","CTenure")]
##    store   Sales Profit     MTenure   CTenure
## 37    37 1202917 187765  23.1985000  1.347023
## 61    61  716589 177046  21.8184200 13.305950
## 52    52 1073008 169201  24.1185600  3.416838
## 54    54  811190 159792   6.6703910  3.876797
## 13    13  857843 152513   0.6571813  1.577002
## 32    32  828918 149033  36.0792600  6.636550
## 55    55  925744 147672   6.6703910 18.365500
## 41    41  744211 147327  14.9180200 11.926080
## 66    66  879581 146058 115.2039000  3.876797
## 57    57  699306 122180  24.3485700  2.956879

TASK 4g

  1. Draw a scatter plot of Profit vs. MTenure
library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(store.df$MTenure,store.df$Profit,main = "Scatterplot of Profit Vs MTenure",xlab = "MTenure",ylab = "Profit",lwd = 2,smoother = FALSE)
lw1 <- loess(Profit~MTenure,data = store.df)
j <- order(store.df$MTenure)
lines(store.df$MTenure[j],lw1$fitted[j],col="red",lwd = 2,lty="dashed")

Task 4h

  1. Draw a scatter plot of Profit vs. CTenure.
library(car)
scatterplot(store.df$CTenure,store.df$Profit,main = "Scatterplot of Profit Vs CTenure",xlab = "CTenure",ylab = "Profit",lwd = 2,smoother = FALSE)
lw1 <- loess(Profit~CTenure,data = store.df)
j <- order(store.df$CTenure)
lines(store.df$CTenure[j],lw1$fitted[j],col="red",lwd = 2,lty="dashed")

Task 4i

  1. Construct a Correlation Matrix for all the variables in the dataset. (Display the numbers up to 2 Decimal places)
cor <- cor(store.df)
round(cor,2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00

Task 4j

9.Measure the correlation between Profit and MTenure. (Display the numbers up to 2 Decimal places)

round(cor(Profit,MTenure),2)
## [1] 0.44

10.Measure the correlation between Profit and CTenure. (Display the numbers up to 2 Decimal places)

round(cor(Profit,CTenure),2)
## [1] 0.26

Task 4k

  1. Construct the following Corrgram based on all variables in the dataset
library(corrgram)
corrgram(store.df,lower.panel = panel.shade,upper.panel=panel.pie,text.panel = panel.txt,main="Corrgram of Store Variables")

Task 4l

  1. Run a Pearson’s Correlation test on the correlation between Profit and MTenure. What is the p-value?
cor.test(Profit,MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  Profit and MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

The p-value is very very small(8.193e-05).

  1. Run a Pearson’s Correlation test on the correlation between Profit and CTenure. What is the p-value?
cor.test(Profit,CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  Profit and CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

The p-value is small(0.02562).

TASK 4m

  1. Run a regression of Profit on {MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}
model <- lm(Profit~MTenure+CTenure+Comp+Pop+PedCount+Res+Hours24+Visibility)
summary(model)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

Task 4n

  1. List the explanatory variable(s) whose beta-coefficients are statistically significant(p < 0.05). 1.MTenure: Average manager tenure during FY-2000 where tenure is defined as the number of months of experience with Store24. 2.CTenure: Average crew tenure during FY-2000 where tenure is defined as the number of months of experience with Store24. 3.PedCount: 5-point rating on pedestrian foot traffic volume with 5 being the highest 4.CrewSkill: Skill of Crew in the store (rating out of 5) 5.MgrSkill: Skill of Manager in the store (rating out of 5) 6.ServQual: Service Quality

  2. List the explanatory variable(s) whose beta-coefficients are not statistically significant(p > 0.05). 1.Visibility: 5-point rating on visibility of store front with 5 being the highest 2.Pop: Population within a ½ mile radius

Task 4o

  1. What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month?
model$coefficients[2]
##  MTenure 
## 760.9927
  1. What is expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month?
model$coefficients[3]
## CTenure 
## 944.978

Task 4p

  1. Executive Summary: From the above corrgram obtained we can say that Profit is correlated to MTenure, CTenure, Pop, CrewSkill, MgrSkill and ServQual. We can see that the skills of manager and the crew of a store is tightly correlated to the Profit. The MTenure and CTenure is more tightly correlated to the Profit of the store. So retaining a Manager and Crew Member is very much Important. Thus We can say that retaining an Employee and a Manager is very much important in making profits. Obviously as the Sales increses profits also increase which can be seen though the corrgram above. The Visibilty is weakly correlated with the Profit as the Store24 is itself a brand and we don’t need to care about Visibility. We can say from the regression analysis that an increase in Manager’s experience with Store24 can increase the store’s profit by USD 760.993. We can say from the regression analysis that an increase in Crew’s experience with Store24 can increase the store’s profit by USD 944.978.