This report is based on the analysis of the case Managing Employee Retention.

4c)

store <- read.csv(paste("Store24.csv", sep=""))
View(store)
library(psych)
describe(store)
##            vars  n       mean        sd     median    trimmed       mad
## store         1 75      38.00     21.79      38.00      38.00     28.17
## Sales         2 75 1205413.12 304531.31 1127332.00 1182031.25 288422.04
## Profit        3 75  276313.61  89404.08  265014.00  270260.34  90532.00
## MTenure       4 75      45.30     57.67      24.12      33.58     29.67
## CTenure       5 75      13.93     17.70       7.21      10.60      6.14
## Pop           6 75    9825.59   5911.67    8896.00    9366.07   7266.22
## Comp          7 75       3.79      1.31       3.63       3.66      0.82
## Visibility    8 75       3.08      0.75       3.00       3.07      0.00
## PedCount      9 75       2.96      0.99       3.00       2.97      1.48
## Res          10 75       0.96      0.20       1.00       1.00      0.00
## Hours24      11 75       0.84      0.37       1.00       0.92      0.00
## CrewSkill    12 75       3.46      0.41       3.50       3.47      0.34
## MgrSkill     13 75       3.64      0.41       3.59       3.62      0.45
## ServQual     14 75      87.15     12.61      89.47      88.62     15.61
##                  min        max      range  skew kurtosis       se
## store           1.00      75.00      74.00  0.00    -1.25     2.52
## Sales      699306.00 2113089.00 1413783.00  0.71    -0.09 35164.25
## Profit     122180.00  518998.00  396818.00  0.62    -0.21 10323.49
## MTenure         0.00     277.99     277.99  2.01     3.90     6.66
## CTenure         0.89     114.15     113.26  3.52    15.00     2.04
## Pop          1046.00   26519.00   25473.00  0.62    -0.23   682.62
## Comp            1.65      11.13       9.48  2.48    11.31     0.15
## Visibility      2.00       5.00       3.00  0.25    -0.38     0.09
## PedCount        1.00       5.00       4.00  0.00    -0.52     0.11
## Res             0.00       1.00       1.00 -4.60    19.43     0.02
## Hours24         0.00       1.00       1.00 -1.82     1.32     0.04
## CrewSkill       2.06       4.64       2.58 -0.43     1.64     0.05
## MgrSkill        2.96       4.62       1.67  0.27    -0.53     0.05
## ServQual       57.90     100.00      42.10 -0.66    -0.72     1.46

4d)

Use R to measure the mean and standard deviation of Profit.

mean(store$Profit)
## [1] 276313.6
sd(store$Profit)
## [1] 89404.08

Use R to measure the mean and standard deviation of MTenure.

mean(store$MTenure)
## [1] 45.29644
sd(store$MTenure)
## [1] 57.67155

Use R to measure the mean and standard deviation of CTenure.

mean(store$CTenure)
## [1] 13.9315
sd(store$CTenure)
## [1] 17.69752

4e) Sorting and Subsetting data in R

attach(mtcars)
View(mtcars)
newdata <- mtcars[order(mpg),] # sort by mpg (ascending)
View(newdata)
newdata[1:5,] # see the first 5 rows
##                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
## Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
## Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
## Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
newdata <- mtcars[order(-mpg),] # sort by mpg (descending)
View(newdata)
detach(mtcars)

4f) Replicate Exhibit 1 shown in the case, using R

attach(store)
View(store)
new <- store[order(-Profit),] # sort by Profit (descending)
View(new)
head(new[ , c(2, 3:5)], 10) # see the first 10 rows
##      Sales Profit   MTenure    CTenure
## 74 1782957 518998 171.09720  29.519510
## 7  1809256 476355  62.53080   7.326488
## 9  2113089 474725 108.99350   6.061602
## 6  1703140 469050 149.93590  11.351130
## 44 1807740 439781 182.23640 114.151900
## 2  1619874 424007  86.22219   6.636550
## 45 1602362 410149  47.64565   9.166325
## 18 1704826 394039 239.96980  33.774130
## 11 1583446 389886  44.81977   2.036961
## 47 1665657 387853  12.84790   6.636550
tail(new[ , c(2, 3:5)], 10) # see the first 10 rows
##      Sales Profit     MTenure   CTenure
## 37 1202917 187765  23.1985000  1.347023
## 61  716589 177046  21.8184200 13.305950
## 52 1073008 169201  24.1185600  3.416838
## 54  811190 159792   6.6703910  3.876797
## 13  857843 152513   0.6571813  1.577002
## 32  828918 149033  36.0792600  6.636550
## 55  925744 147672   6.6703910 18.365500
## 41  744211 147327  14.9180200 11.926080
## 66  879581 146058 115.2039000  3.876797
## 57  699306 122180  24.3485700  2.956879
#detach(store)

4g) Scatter Plots

plot(store$MTenure, store$Profit, 
     col="black",
     main="Scatterplot of Profit vs Mtenure",
     xlab="MTenure", ylab="Profit ")
abline(lm(store$Profit ~ store$MTenure), col="green")

4h) Scatter Plots

plot(store$CTenure, store$Profit, 
     col="black",
     main="Scatterplot of Profit vs Ctenure",
     xlab="CTenure", ylab="Profit ")
abline(lm(store$Profit ~ store$CTenure), col="green")

4i) Correlation Matrix

cor(store)
##                  store       Sales      Profit     MTenure      CTenure
## store       1.00000000 -0.22693400 -0.19993481 -0.05655216  0.019930097
## Sales      -0.22693400  1.00000000  0.92387059  0.45488023  0.254315184
## Profit     -0.19993481  0.92387059  1.00000000  0.43886921  0.257678895
## MTenure    -0.05655216  0.45488023  0.43886921  1.00000000  0.243383135
## CTenure     0.01993010  0.25431518  0.25767890  0.24338314  1.000000000
## Pop        -0.28936691  0.40348147  0.43063326 -0.06089646 -0.001532449
## Comp        0.03194023 -0.23501372 -0.33454148  0.18087179 -0.070281327
## Visibility -0.02648858  0.13065638  0.13569207  0.15651731  0.066506016
## PedCount   -0.22117519  0.42391087  0.45023346  0.06198608 -0.084112627
## Res        -0.03142976 -0.16672402 -0.15947734 -0.06234721 -0.340340876
## Hours24     0.02687986  0.06324716 -0.02568703 -0.16513872  0.072865022
## CrewSkill   0.04866273  0.16402179  0.16008443  0.10162169  0.257154817
## MgrSkill   -0.07218804  0.31163056  0.32284842  0.22962743  0.124045346
## ServQual   -0.32246921  0.38638112  0.36245032  0.18168875  0.081156172
##                     Pop        Comp  Visibility     PedCount         Res
## store      -0.289366908  0.03194023 -0.02648858 -0.221175193 -0.03142976
## Sales       0.403481471 -0.23501372  0.13065638  0.423910867 -0.16672402
## Profit      0.430633264 -0.33454148  0.13569207  0.450233461 -0.15947734
## MTenure    -0.060896460  0.18087179  0.15651731  0.061986084 -0.06234721
## CTenure    -0.001532449 -0.07028133  0.06650602 -0.084112627 -0.34034088
## Pop         1.000000000 -0.26828355 -0.04998269  0.607638861 -0.23693726
## Comp       -0.268283553  1.00000000  0.02844548 -0.146325204  0.21923878
## Visibility -0.049982694  0.02844548  1.00000000 -0.141068116  0.02194756
## PedCount    0.607638861 -0.14632520 -0.14106812  1.000000000 -0.28437852
## Res        -0.236937265  0.21923878  0.02194756 -0.284378520  1.00000000
## Hours24    -0.221767927  0.12957478  0.04692587 -0.275973353 -0.08908708
## CrewSkill   0.282845090 -0.04229731 -0.19745297  0.213672596 -0.15331247
## MgrSkill    0.083554590  0.22407913  0.07348301  0.087475440 -0.03213640
## ServQual    0.123946521  0.01814508  0.20992919 -0.005445552  0.09081624
##                Hours24   CrewSkill    MgrSkill     ServQual
## store       0.02687986  0.04866273 -0.07218804 -0.322469213
## Sales       0.06324716  0.16402179  0.31163056  0.386381121
## Profit     -0.02568703  0.16008443  0.32284842  0.362450323
## MTenure    -0.16513872  0.10162169  0.22962743  0.181688755
## CTenure     0.07286502  0.25715482  0.12404535  0.081156172
## Pop        -0.22176793  0.28284509  0.08355459  0.123946521
## Comp        0.12957478 -0.04229731  0.22407913  0.018145080
## Visibility  0.04692587 -0.19745297  0.07348301  0.209929194
## PedCount   -0.27597335  0.21367260  0.08747544 -0.005445552
## Res        -0.08908708 -0.15331247 -0.03213640  0.090816237
## Hours24     1.00000000  0.10536295 -0.03883007  0.058325655
## CrewSkill   0.10536295  1.00000000 -0.02100949 -0.033516504
## MgrSkill   -0.03883007 -0.02100949  1.00000000  0.356702708
## ServQual    0.05832565 -0.03351650  0.35670271  1.000000000

4j) Correlations

cor.test(store[,"Profit"], store[,"MTenure"])
## 
##  Pearson's product-moment correlation
## 
## data:  store[, "Profit"] and store[, "MTenure"]
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692
cor.test(store[,"Profit"], store[,"CTenure"])
## 
##  Pearson's product-moment correlation
## 
## data:  store[, "Profit"] and store[, "CTenure"]
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

4k)Use R to construct the following Corrgram based on all variables in the dataset.

library(corrgram)
corrgram(store, order=TRUE, lower.panel=panel.shade,
         upper.panel=panel.pie, text.panel=panel.txt,
         main="Corrgram of store variables")

4l) Pearson’s Correlation Tests

cor.test(store[,"Profit"], store[,"MTenure"])
## 
##  Pearson's product-moment correlation
## 
## data:  store[, "Profit"] and store[, "MTenure"]
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692
cor.test(store[,"Profit"], store[,"CTenure"])
## 
##  Pearson's product-moment correlation
## 
## data:  store[, "Profit"] and store[, "CTenure"]
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

3m) Regression Analysis

fit <- lm(Profit ~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility , data=store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

4n)

List of the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05): CTenure, Comp, Pop, PedCount, Res, Hours24

List the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05). MTenure, Visibility

4p)Executive summary

Here Profit is the dependent variable and MTenure, CTenure, Comp, Pop, PedCount, Res, Hours24, Visibility are independent variables. Here all regression coefficients are significantly different from zero, (p < 0.001). The multiple R-squared (0.6379) indicates that the model accounts for 63.79% of the variance in profit. The residual standard error (56970) can be thought of as the average error in predicting profit from the data set using this model. The F statistic tests whether the predictor variables, taken together, predict the response variable above chance levels.Here F-statistic 14.53