attach(y)
head(y,10)
## # A tibble: 10 x 4
##    Start.Date  freq   day weekdays
##        <date> <int> <int>   <fctr>
##  1 2014-01-01  4257     1        3
##  2 2014-01-02 15595     2        4
##  3 2014-01-03 11527     3        5
##  4 2014-01-04  6826     4        6
##  5 2014-01-05  9003     5        7
##  6 2014-01-06 12942     6        1
##  7 2014-01-07 17267     7        2
##  8 2014-01-08 19553     8        3
##  9 2014-01-09 18969     9        4
## 10 2014-01-10 18593    10        5
#########################################################
####################################################
################################################################
modelt<- ts(y$freq,frequency = 365,start = c(2014,1))
plot.ts(modelt)

modelt
## Time Series:
## Start = c(2014, 1) 
## End = c(2017, 1) 
## Frequency = 365 
##    [1]  4257 15595 11527  6826  9003 12942 17267 19553 18969 18593 15394
##   [12] 11789 17541 20528 19036 18697 17255 15070 15803 20996 21512 20828
##   [23] 19844 19042 14329  6965 18130 19729 10483 16839 13662 13724 15617
##   [34] 20224 20998 28928 24927 19564 10736 11519 19085 18356 17844 20747
##   [45] 12672 11041 18171 18816 19267 21284 19209 21027 19663 13504 21250
##   [56] 20482 23700 20445 13608 18477 11539 17961 22811 24848 24412 24106
##   [67] 25103 33340 24109 23628 26878 27234 27781 29139 33881 26191 25276
##   [78] 26459 23478 23591 18833 17279 23825 19234 20284 23238 23879 28970
##   [89] 26186 26491 29476 28598 28015 27092 25302 16150 18696 26388 29343
##  [100] 28982 28188 25339 30975 28469 29675 30680 27388 21819 21082  7062
##  [111] 20219 22468 26830 28799 20158 24781 21037 29189 45802 48418 16450
##  [122] 26238 30985 32493 33273 32004 28544 19161 29808 19040 17420 25937
##  [133] 25105 33788 34822 35809 37568 42948 36748 33323 34132 30539 30192
##  [144] 18423 32905 11919 14280 21785 28911 30984 34518 36142 33179 29081
##  [155] 25594 34235 37044 29543 43852 34007 39759 39217 39639 39604 32289
##  [166] 28546 31325 37374 35105 35805 36494 41756 41016 34878 37665 39227
##  [177] 35088 35533 19890 26338 31852 39086 40425 42664 37847 26905 30721
##  [188] 35756 34711 38422 31811 27206 37737 32790 38002 40412 41845 41917
##  [199] 39935 36416 33843 38046 42410 42021 41982 31458 43080 39295 35834
##  [210] 41874 42566 41441 39078 37084 41044 39049 39768 37792 41552 33375
##  [221] 46375 23331 30946 33898 36903 26429 31489 46505 39247 30389 34954
##  [232] 36415 32845 33572 29539 30440  6078 18217 31872 31481 31980 30340
##  [243] 32795 27124 36538 36130 35077 34547 32861 33739 36686 37345 36743
##  [254] 34957 36714 33675 31366 36276 37152 38162 38039 36317 30543 32893
##  [265] 34847 36124 32339 34990 35034 34545 37353 31353 36991 32402 36594
##  [276] 37438 18676 32674 24117 31147 23248 26319 32020 30050 22718 13131
##  [287] 28081 25044 31077 32251 28415 30003 31288 24435 30295 30914 28737
##  [298] 29562 26152 33334 34934 23011 32054 35927 31390 15691 22117 23255
##  [309] 27604 27932 26489 17163 23739 27973 28666 24634 27519 21159 22457
##  [320] 17529 21156 25785 28459 28719 23743 17941  5960 25587 24135 22733
##  [331] 26387 26401 23814 19703 24752 21366 25058 19840 22703 17220 12649
##  [342] 23290 23723 24793 22827 20225 17995 14283 22761 22885 21916 22994
##  [353] 21767 14550 11692 18377 16435 10287 38139  7545  6277  9180 12291
##  [364] 12970 12612  9433 15125  5714  9234 20372 20613 22332 15601 22104
##  [375] 14709 14575 17199 24697 23565 22968 22663 15268 13199 23034 23247
##  [386] 22782 23278 21892 17539 15094 22710 25000 21536 21275 21171 10250
##  [397] 11305 21640 19869 21850 21200 20955 13149 15778 23858 24211 23680
##  [408] 23227 17699 14423 16952 16381 25064 25132 16898 20715 16198  9086
##  [419] 21764 23688 21592 20036 24367 13529 15641 22258 23845 24485 24896
##  [430] 25337 27365 20017 24037 27674 27419 28131 25700 18101 10662 19824
##  [441] 25780 26439 24077 25226 16116 18618 25592 24083 25672 20305 26348
##  [452] 18986  8905 22106 22766 23539 22682 11298 13633 19369 25439 29441
##  [463] 30643 31520 32052 25113 29204 28048 34519 37470 30489 29796 29595
##  [474] 19736 32057 34908 32381 32773 32102 25194 19427 30489 31783 26030
##  [485] 31621 29579 22231 21165 26795 26488 24438 31144 26878 27810 32226
##  [496] 33719 33820 36699 15609 32343 32526 31323 24288 28331 30534 34833
##  [507] 33435 23849 30018 29502 34809 36407 34387 26023 29206 14998 27864
##  [518] 27939 35377 39451 34803 32820 35407 32587 33255 35707 38808 35172
##  [529] 30298 25235 34558 37923 38591 38687 35966 26295 30393 29557 37472
##  [540] 38940 38673 37019 36581 25706 39082 43326 42641 38262 39611 38283
##  [551] 29716 38620 37908 41703 72504 42779 42091 23240 27416 35348 34574
##  [562] 39306 38505 38491 36693 31878 40696 37915 39092 16034 32608 12398
##  [573] 31904 36101 36761 36145 36675 43017 43295 35402 37644 38770 63468
##  [584] 39486 38993 40441 35335 34318 36548 25974 25419 33739 30616 35695
##  [595] 34530 31640 32554 35882 44187 27001 17400 28152 23738 30528 32950
##  [606] 22618 24972  9639 25556 30180 30950 29709 22317 29429 31692 32781
##  [617] 33116 35734 34426 28848 26166 25811 28066 18653 32075 29829 33492
##  [628] 31141 23676 20434 33977 29396 34783 32636 29817 33138 34436 34941
##  [639] 34562 35503 28956 29884 20741 25892 28629 33676 34123 29416 27796
##  [650] 31292 31545 30579 30874 30075 24327 23070 29952 32718 18922 30326
##  [661] 30273 16876 23410 30364 32436 23881 27339 23970 27464 22848 28033
##  [672] 30710 23462 24503 25431 14881 18754 28474 29206 29899 28962 25252
##  [683]  8898 17594 26507 23649 26445 23695 25788 12751 13118 23908 21175
##  [694] 26000 26626 23517 16336 11392 21766 26559 27789 25899 25956 16511
##  [705] 15478 25734 23430 27562 23115 23259 16657 12291 23835 20201 25558
##  [716] 25804 25730 18754 13060 18136 17458 18451  8908 22423 10230  9378
##  [727] 13732 15592 12301 13889  9797  7195  4869 20533 22805 23038 18083
##  [738] 20762 11583 14320 21092 22799 24586 22186 22446 16091 11762 22762
##  [749] 23819 23800 23378 18328 17218 16360 25724 20224 21708 25324 22526
##  [760] 16381 11019 23606 24514 24436 25154 22597 13126 14101 19852 23308
##  [771] 23626 25186 22819  9869 13697 21789 24386 19034 23517 22173 11136
##  [782] 14670 20463 25657 25481 24174 23580 14745 13451 23585 20704 20635
##  [793] 24416 23970 12215 12510 22672 23129 19142 23504 20893 21573 21687
##  [804] 25448 25224 25322 27060 23047 17903 17043 25852 29150 26837 19329
##  [815] 25236 11109 10028 10216 18814 26516 28304 27428 24786 25335 25389
##  [826] 30927 24244 22410 27494 20013 23781 24262 31065 32108 30924 15936
##  [837] 17827 27288 28512 33719 34577 31937 20532 22060 18873 24389 27862
##  [848] 28432 28901 25659 25039 29747 19724 32296 36567 39154 40131 44561
##  [859] 45495 30875 21705 27971 38585 35115 30450 34821 37469 36810 24347
##  [870] 34687 36105 26794 31139 35480 36580 31979 37539 36133 31307 31252
##  [881] 24069 16227 27188 29189 29587 30151 40909 39582 35137 34621 41675
##  [892] 40146 29027 18135 27601 30218 37742 31435 32024 29698 31412 22382
##  [903] 39003 36659 25201 36535 26367 29634 33752 31701 31556 35934 28111
##  [914] 30811 34264 37683 40955 42931 39673 37316 34530 29592 32800 30186
##  [925] 36163 40408 37047 38933 38387 43711 46625 45220 41793 36406 42134
##  [936] 39123 41050 42528 33761 39068 35744 46258 46358 30107 28949 40735
##  [947] 39527 40579 42586 38671 38194 40054 38949 38069 40646 43801 44654
##  [958] 41821 40899 42986 39475 25867 24734 28660 36093 42559 41140 38249
##  [969] 38228 32673 26338 34725 39993 39453 40353 34669 23812 27936 28246
##  [980] 38031 40323 41034 36574 17326 39997 39787 44084 44999 42658 22216
##  [991] 27563 29863 33449 37660 40696 38448 38970 36256 30067 35084 36094
## [1002] 38899 34863 34148 17836 27363 35903 37163 36342 35359 33365 27243
## [1013] 25423 33069 35256 32592 30832 32644 23780 18725 29027 33065 33997
## [1024] 32644 30844 26330 23834 30375 33314 34364 34232 33781 28129 24183
## [1035] 34776 32334 32369 31186 22145 19649 13576 17330 26383 18897 26101
## [1046] 28095  9712 19295 24842 28812 27723 27742 26896 18305 10728 19423
## [1057] 27724 29118 28215 27697 19819 15655 27022 27848 27165 26477 26229
## [1068] 18124 15468 26478 28347 29760 28662 30084 15063 17741 25528 26765
## [1079] 29158 28480 27931 17483 15189 23754 25120 23343 21682 14534  7978
## [1090] 37401 11637 11003 12546 14228 11687 11590
modelt1<- auto.arima(modelt)
plot.ts(modelt1$residuals)

qqnorm(modelt1$residuals)

y1<- re2017
pf<- forecast(modelt1,h=10)
plot(pf)

summary(pf)
## 
## Forecast method: ARIMA(5,1,2)
## 
## Model Information:
## Series: modelt 
## ARIMA(5,1,2)                    
## 
## Coefficients:
##          ar1      ar2      ar3      ar4      ar5      ma1     ma2
##       0.6148  -0.6395  -0.2463  -0.2016  -0.1639  -1.1414  0.8381
## s.e.  0.0608   0.0416   0.0396   0.0370   0.0343   0.0516  0.0557
## 
## sigma^2 estimated as 30339351:  log likelihood=-10983.42
## AIC=21982.83   AICc=21982.96   BIC=22022.82
## 
## Error measures:
##                    ME     RMSE      MAE       MPE     MAPE     MASE
## Training set 13.94085 5487.977 3988.984 -4.908538 18.17164 0.661106
##                     ACF1
## Training set -0.00806169
## 
## Forecasts:
##           Point Forecast    Lo 80    Hi 80      Lo 95    Hi 95
## 2017.0027       12039.71 4980.775 19098.65  1243.9997 22835.42
## 2017.0055       13298.55 5488.476 21108.62  1354.0742 25243.02
## 2017.0082       14045.30 5857.362 22233.23  1522.9318 26567.66
## 2017.0110       14024.75 5447.850 22601.65   907.5131 27141.99
## 2017.0137       13149.75 4167.049 22132.46  -588.1073 26887.61
## 2017.0164       12113.51 2792.189 21434.82 -2142.2188 26369.23
## 2017.0192       11684.11 1870.567 21497.66 -3324.4098 26692.64
## 2017.0219       12180.03 1714.088 22645.97 -3826.2466 28186.30
## 2017.0247       13194.52 2119.673 24269.36 -3742.9949 30132.03
## 2017.0274       13959.21 2452.439 25465.98 -3638.8782 31557.30
y1$fp<- pf$fitted[1:339]

head(re2017,10)
## # A tibble: 10 x 5
##       X1 Start.Date  freq   day weekdays
##    <int>     <date> <int> <int>    <int>
##  1     1 2017-01-01  6536     1        7
##  2     2 2017-01-02 11979     2        1
##  3     3 2017-01-03 19622     3        2
##  4     4 2017-01-04 22144     4        3
##  5     5 2017-01-05 23594     5        4
##  6     6 2017-01-06 18975     6        5
##  7     7 2017-01-07 13881     7        6
##  8     8 2017-01-08 13538     8        7
##  9     9 2017-01-09 38091     9        1
## 10    10 2017-01-10 28106    10        2
ggplot(data=y1,aes(x=y1$Start.Date,y=freq))+geom_line()+
  geom_line(data=y1,aes(x=Start.Date,y=fp),col="red")

mean((re2017$freq-pf$fitted[1:339])^2)
## [1] 67258748