Our task is to create an LU decomposition of a 4 by 4 matrix. At the end, we check to ensure that the resulting decomposition multiplies to return our original matrix.

Factorized<-function(a){
otherMatrix<-matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),nrow=4)  
print(a)
for (i in 2:4){
factorOne<- (-a[i,1])
factorTwo<-a[1,1]
 for(j in 1:4) {a[i,j]<- (((factorOne/factorTwo)*a[1,j])+a[i,j])}
otherMatrix[i,1]<-(-factorOne/factorTwo)
 print(a) 
}
for (i in 3:4){
factorOne<- (-a[i,2])
factorTwo<-a[2,2]
 for(j in 1:4) {a[i,j]<- (((factorOne/factorTwo)*a[2,j])+a[i,j])}
otherMatrix[i,2]<-(-factorOne/factorTwo)
 print(a) 
}
factorOne<- (-a[i,3])
factorTwo<-a[3,3]
 for(j in 1:4) {a[i,j]<- (((factorOne/factorTwo)*a[3,j])+a[i,j])}
otherMatrix[i,3]<-(-factorOne/factorTwo)
print("Our upper triangular is:")
print(a)
print("Our lower triangular is:")
print(otherMatrix)
print("When we multiply our L * U, we return to our original matrix.")
print(otherMatrix%*%a)
}
MatrixA<-matrix(c(.5,7,3,4,1,2,17,4,5,10,11,12,13,14,25,36),nrow=4)
Factorized(MatrixA)
##      [,1] [,2] [,3] [,4]
## [1,]  0.5    1    5   13
## [2,]  7.0    2   10   14
## [3,]  3.0   17   11   25
## [4,]  4.0    4   12   36
##      [,1] [,2] [,3] [,4]
## [1,]  0.5    1    5   13
## [2,]  0.0  -12  -60 -168
## [3,]  3.0   17   11   25
## [4,]  4.0    4   12   36
##      [,1] [,2] [,3] [,4]
## [1,]  0.5    1    5   13
## [2,]  0.0  -12  -60 -168
## [3,]  0.0   11  -19  -53
## [4,]  4.0    4   12   36
##      [,1] [,2] [,3] [,4]
## [1,]  0.5    1    5   13
## [2,]  0.0  -12  -60 -168
## [3,]  0.0   11  -19  -53
## [4,]  0.0   -4  -28  -68
##      [,1] [,2] [,3] [,4]
## [1,]  0.5    1    5   13
## [2,]  0.0  -12  -60 -168
## [3,]  0.0    0  -74 -207
## [4,]  0.0   -4  -28  -68
##      [,1] [,2] [,3] [,4]
## [1,]  0.5    1    5   13
## [2,]  0.0  -12  -60 -168
## [3,]  0.0    0  -74 -207
## [4,]  0.0    0   -8  -12
## [1] "Our upper triangular is:"
##      [,1] [,2] [,3]       [,4]
## [1,]  0.5    1    5   13.00000
## [2,]  0.0  -12  -60 -168.00000
## [3,]  0.0    0  -74 -207.00000
## [4,]  0.0    0    0   10.37838
## [1] "Our lower triangular is:"
##      [,1]       [,2]      [,3] [,4]
## [1,]    1  0.0000000 0.0000000    0
## [2,]   14  1.0000000 0.0000000    0
## [3,]    6 -0.9166667 1.0000000    0
## [4,]    8  0.3333333 0.1081081    1
## [1] "When we multiply our L * U, we return to our original matrix."
##      [,1] [,2] [,3] [,4]
## [1,]  0.5    1    5   13
## [2,]  7.0    2   10   14
## [3,]  3.0   17   11   25
## [4,]  4.0    4   12   36