C12 † Page 388
Book: Beezer: A First Course in Linear Algebra
Exercise
Find the characteristic polynomial of the matrix A.
\[A = \begin{pmatrix}1&2&1&0\\ 1&0&1&0\\ 2&1&1&0\\ 3&1&0&1\end{pmatrix}\]
Solution
A characteristic polynomial of square matrix \(A\) is defined as \(f_A (\lambda) = \det \left(A-\lambda I\right)\) where \(I\) is the identity matrix of same dimension as \(A\).
\[f_A (\lambda) = \det \left(A-\lambda I\right)\]
First, I will calculate \(\left(A-\lambda I\right)\)
\[\begin{pmatrix}1&2&1&0\\ 1&0&1&0\\ 2&1&1&0\\ 3&1&0&1\end{pmatrix}- \lambda\begin{pmatrix}1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\end{pmatrix}=\begin{pmatrix}1- \lambda&2&1&0\\ 1&- \lambda&1&0\\ 2&1&1- \lambda&0\\ 3&1&0&1- \lambda\end{pmatrix}\]
Now, I will proceed to find determinant \(\left(A-\lambda I\right)\).
\[\det \left(A-\lambda I\right) = \det \begin{pmatrix}1- \lambda&2&1&0\\ 1&- \lambda&1&0\\ 2&1&1- \lambda&0\\ 3&1&0&1- \lambda\end{pmatrix}\]
By reducing the matrix to row echelon form, have :
\[\det \left(A-\lambda I\right) = \det \begin{pmatrix}1- \lambda&2&1&0\\ 0&\frac{- \lambda-5}{- \lambda+1}&-\frac{3}{- \lambda+1}&- \lambda+1\\ 0&0&\frac{2\left(2 \lambda+3\right)}{ \lambda+5}&-\frac{- \lambda^3+2 \lambda^2+ \lambda-2}{- \lambda-5}\\ 0&0&0&-\frac{ \lambda^4-3 \lambda^3-2 \lambda^2+2 \lambda+2}{2\left(2 \lambda+3\right)}\end{pmatrix}\]
Since the determinant of the matrix equals the diagonal product of the matrix.
\[\det \left(A-\lambda I\right) = \left(1- \lambda\right)\frac{- \lambda-5}{- \lambda+1}\cdot \frac{2\left(2 \lambda+3\right)}{ \lambda+5}\left(-\frac{ \lambda^4-3 \lambda^3-2 \lambda^2+2 \lambda+2}{2\left(2 \lambda+3\right)}\right)\]
By simpliying the above expression, we obtain as follows:
\[\det \left(A-\lambda I\right) = \lambda^4-3\lambda^3-2\lambda^2+2\lambda+2\]
Since \(f_A (\lambda) = \det \left(A-\lambda I\right)\)
The answer will be:
\[f_A (\lambda) = \lambda^4-3\lambda^3-2\lambda^2+2\lambda+2\]
Solving in R
- Defining Matrix
# https://www.rdocumentation.org/packages/pracma/versions/1.9.9/topics/charpoly
A <- matrix(data = c(1,2,1,0,
1,0,1,0,
2,1,1,0,
3,1,0,1), ncol=4, byrow=TRUE)
- For this I will employ the charpoly function from the pracma library in R.
charpoly(A, info = FALSE)
## [1] 1 -3 -2 2 2
To interpret the answer, it will be as follows:
\[f_A (\lambda) = \lambda^4-3\lambda^3-2\lambda^2+2\lambda+2\]