Purpose of Visualization

An effective chart is one that:

1.Conveys the right information without distorting facts.
2.Is simple but elegant. It should not force you to think much in order to get it.
3.Aesthetics supports information rather that overshadow it.
4.Is not overloaded with information.

Primarily there are 6 types of Objectives behind preparing visualizations for analysis.
1. Correlation - To find out how two variables are correlated.
2. Deviation - Compare variation in values of small number of items with respect to a fixed reference.
3. Ranking - Used to compare the position or performance of multiple items with respect to each other. Actual values matters somewhat less than the ranking.
4. Distribution - When you have lots and lots of data points and want to study where and how the data points are distributed.
5. Composition - To find out the composition amount of different items in a mix of items.
6. Groups - To find out the similar items which could be collated in a group.

We will see in detail as which visualizations are used to accomplish each of the objectives listed above.There could be one or more than one visualisation in ggplot for each of the analysis objective listed above.

Correlation

  1. Scatterplots
    The most frequently used plot for data analysis is undoubtedly the scatterplot. Whenever you want to understand the nature of relationship between two variables, invariably the first choice is the scatterplot.
options(scipen=999)  # turn-off scientific notation like 1e+48
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.4.3
midwest <- read.csv("http://goo.gl/G1K41K")
theme_set(theme_bw())  # pre-set the bw theme.
data("midwest", package = "ggplot2")

# Scatterplot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + 
  xlim(c(0, 0.1)) + 
  ylim(c(0, 500000)) + 
  labs(subtitle="Area Vs Population", 
       y="Population", 
       x="Area", 
       title="Scatterplot", 
       caption = "Source: midwest")

plot(gg)
## Warning: Removed 15 rows containing non-finite values (stat_smooth).
## Warning: Removed 15 rows containing missing values (geom_point).

  1. Scatterplots with encircling
    When presenting the results, sometimes I would encirlce certain special group of points or region in the chart so as to draw the attention to those peculiar cases. This can be conveniently done using the geom_encircle() in ggalt package.Within geom_encircle(), set the data to a new dataframe that contains only the points (rows) or interest. Moreover, You can expand the curve so as to pass just outside the points. The color and size (thickness) of the curve can be modified as well. See below example.
options(scipen = 999)
library(ggplot2)
library(ggalt)
## Warning: package 'ggalt' was built under R version 3.4.3
midwest_select <- midwest[midwest$poptotal > 350000 & 
                            midwest$poptotal <= 500000 & 
                            midwest$area > 0.01 & 
                            midwest$area < 0.1, ]

# Plot
ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) +   # draw points
  geom_smooth(method="loess", se=F) + 
  xlim(c(0, 0.1)) + 
  ylim(c(0, 500000)) +   # draw smoothing line
  geom_encircle(aes(x=area, y=poptotal), 
                data=midwest_select, 
                color="red", 
                size=2, 
                expand=0.08) +   # encircle
  labs(subtitle="Area Vs Population", 
       y="Population", 
       x="Area", 
       title="Scatterplot + Encircle", 
       caption="Source: midwest")
## Warning: Removed 15 rows containing non-finite values (stat_smooth).
## Warning: Removed 15 rows containing missing values (geom_point).

  1. Jitter Plot
    When we make a scatterplot we might find some points overalapping above another. This can be escaped using a jitter plot. Let’s look at a new data to draw a jitter plot. This time, I will use the mpg dataset to plot city mileage (cty) vs highway mileage (hwy).
library(ggplot2)
data(mpg, package="ggplot2")
# mpg <- read.csv("http://goo.gl/uEeRGu")

# Scatterplot
theme_set(theme_bw())  # pre-set the bw theme.
g <- ggplot(mpg, aes(cty, hwy))
g + geom_jitter(width = .5, size=1) +
  labs(subtitle="mpg: city vs highway mileage", 
       y="hwy", 
       x="cty", 
       title="Jittered Points")

  1. Counts Chart
    The second option to overcome the problem of data points overlap is to use what is called a counts chart. Whereever there is more points overlap, the size of the circle gets bigger.
library(ggplot2)
data(mpg, package="ggplot2")
# mpg <- read.csv("http://goo.gl/uEeRGu")

# Scatterplot
theme_set(theme_bw())  # pre-set the bw theme.
g <- ggplot(mpg, aes(cty, hwy))
g + geom_count(col="tomato3", show.legend=F) +
  labs(subtitle="mpg: city vs highway mileage", 
       y="hwy", 
       x="cty", 
       title="Counts Plot")

  1. Bubble plot
    While scatterplot lets you compare the relationship between 2 continuous variables, bubble chart serves well if you want to understand relationship within the underlying groups based on:
    A Categorical variable (by changing the color) and
    Another continuous variable (by changing the size of points).
    The bubble chart clearly distinguishes the range of displ between the manufacturers and how the slope of lines-of-best-fit varies, providing a better visual comparison between the groups.
# load package and data
library(ggplot2)
data(mpg, package="ggplot2")
# mpg <- read.csv("http://goo.gl/uEeRGu")

mpg_select <- mpg[mpg$manufacturer %in% c("audi", "ford", "honda", "hyundai"), ]

# Scatterplot
theme_set(theme_bw())  # pre-set the bw theme.
g <- ggplot(mpg_select, aes(displ, cty)) + 
  labs(subtitle="mpg: Displacement vs City Mileage",
       title="Bubble chart")

g + geom_jitter(aes(col=manufacturer, size=hwy)) + 
  geom_smooth(aes(col=manufacturer), method="lm", se=F)

  1. marginal Histogram/Box plot
    If you want to show the relationship as well as the distribution in the same chart, use the marginal histogram. It has a histogram of the X and Y variables at the margins of the scatterplot.
    This can be implemented using the ggMarginal() function from the ‘ggExtra’ package. Apart from a histogram, you could choose to draw a marginal boxplot or density plot by setting the respective type option.
library(ggplot2)
library(ggExtra)
## Warning: package 'ggExtra' was built under R version 3.4.3
data(mpg, package="ggplot2")
# mpg <- read.csv("http://goo.gl/uEeRGu")

# Scatterplot
theme_set(theme_bw())  # pre-set the bw theme.
mpg_select <- mpg[mpg$hwy >= 35 & mpg$cty > 27, ]
g <- ggplot(mpg, aes(cty, hwy)) + 
  geom_count() + 
  geom_smooth(method="lm", se=F)

ggMarginal(g, type = "histogram", fill="transparent")
ggMarginal(g, type = "boxplot", fill="transparent")

# ggMarginal(g, type = "density", fill="transparent")
  1. Correlogram
    Correlogram let’s you examine the corellation of multiple continuous variables present in the same dataframe. This is conveniently implemented using the ggcorrplot package.
library(ggplot2)
library(ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 3.4.3
# Correlation matrix
data(mtcars)
corr <- round(cor(mtcars), 1)

# Plot
ggcorrplot(corr, hc.order = TRUE, 
           type = "lower", 
           lab = TRUE, 
           lab_size = 3, 
           method="circle", 
           colors = c("tomato2", "white", "springgreen3"), 
           title="Correlogram of mtcars", 
           ggtheme=theme_bw)

Deviation

  1. Diverging bars
    Diverging Bars is a bar chart that can handle both negative and positive values. This can be implemented by a smart tweak with geom_bar(). But the usage of geom_bar() can be quite confusing. Thats because, it can be used to make a bar chart as well as a histogram.
    In order to make sure you get diverging bars instead of just bars, make sure, your categorical variable has 2 categories that changes values at a certain threshold of the continuous variable. In below example, the mpg from mtcars dataset is normalised by computing the z score. Those vehicles with mpg above zero are marked green and those below are marked red.
theme_set(theme_bw())  

# Data Prep
data("mtcars")  # load data
mtcars$`car name` <- rownames(mtcars)  # create new column for car names
mtcars$mpg_z <- round((mtcars$mpg - mean(mtcars$mpg))/sd(mtcars$mpg), 2)  # compute normalized mpg
mtcars$mpg_type <- ifelse(mtcars$mpg_z < 0, "below", "above")  # above / below avg flag
mtcars <- mtcars[order(mtcars$mpg_z), ]  # sort
mtcars$`car name` <- factor(mtcars$`car name`, levels = mtcars$`car name`)  # convert to factor to retain sorted order in plot.

# Diverging Barcharts
ggplot(mtcars, aes(x=`car name`, y=mpg_z, label=mpg_z)) + 
  geom_bar(stat='identity', aes(fill=mpg_type), width=.5)  +
  scale_fill_manual(name="Mileage", 
                    labels = c("Above Average", "Below Average"), 
                    values = c("above"="#00ba38", "below"="#f8766d")) + 
  labs(subtitle="Normalised mileage from 'mtcars'", 
       title= "Diverging Bars") + 
  coord_flip()

  1. Diverging Lollipop Chart
    Lollipop chart conveys the same information as bar chart and diverging bar. Except that it looks more modern. Instead of geom_bar, I use geom_point and geom_segment to get the lollipops right. Let’s draw a lollipop using the same data I prepared in the previous example of diverging bars.
theme_set(theme_bw())

ggplot(mtcars, aes(x=`car name`, y=mpg_z, label=mpg_z)) + 
  geom_point(stat='identity', fill="black", size=6)  +
  geom_segment(aes(y = 0, 
                   x = `car name`, 
                   yend = mpg_z, 
                   xend = `car name`), 
               color = "black") +
  geom_text(color="white", size=2) +
  labs(title="Diverging Lollipop Chart", 
       subtitle="Normalized mileage from 'mtcars': Lollipop") + 
  ylim(-2.5, 2.5) +
  coord_flip()

  1. Diverging Dot Plot
    Dot plot conveys similar information. The principles are same as what we saw in Diverging bars, except that only point are used.
theme_set(theme_bw())

# Plot
ggplot(mtcars, aes(x=`car name`, y=mpg_z, label=mpg_z)) + 
  geom_point(stat='identity', aes(col=mpg_type), size=6)  +
  scale_color_manual(name="Mileage", 
                     labels = c("Above Average", "Below Average"), 
                     values = c("above"="#00ba38", "below"="#f8766d")) + 
  geom_text(color="white", size=2) +
  labs(title="Diverging Dot Plot", 
       subtitle="Normalized mileage from 'mtcars': Dotplot") + 
  ylim(-2.5, 2.5) +
  coord_flip()

Ranking

  1. Ordered Bar Chart
    Ordered Bar Chart is a Bar Chart that is ordered by the Y axis variable. Just sorting the dataframe by the variable of interest isn’t enough to order the bar chart. In order for the bar chart to retain the order of the rows, the X axis variable (i.e. the categories) has to be converted into a factor.
    Let’s plot the mean city mileage for each manufacturer from mpg dataset. First, aggregate the data and sort it before you draw the plot. Finally, the X variable is converted to a factor.
cty_mpg <- aggregate(mpg$cty, by=list(mpg$manufacturer), FUN=mean)  # aggregate
colnames(cty_mpg) <- c("make", "mileage")  # change column names
cty_mpg <- cty_mpg[order(cty_mpg$mileage), ]  # sort
cty_mpg$make <- factor(cty_mpg$make, levels = cty_mpg$make)  # to retain the order in plot.
head(cty_mpg, 4)
##          make  mileage
## 9     lincoln 11.33333
## 8  land rover 11.50000
## 3       dodge 13.13514
## 10    mercury 13.25000
theme_set(theme_bw())

# Draw plot
ggplot(cty_mpg, aes(x=make, y=mileage)) + 
  geom_bar(stat="identity", width=.5, fill="tomato3") + 
  labs(title="Ordered Bar Chart", 
       subtitle="Make Vs Avg. Mileage", 
       caption="source: mpg") + 
  theme(axis.text.x = element_text(angle=65, vjust=0.6))

  1. Lollipop Chart
    Lollipop charts conveys the same information as in bar charts. By reducing the thick bars into thin lines, it reduces the clutter and lays more emphasis on the value. It looks nice and modern.
theme_set(theme_bw())

# Plot
ggplot(cty_mpg, aes(x=make, y=mileage)) + 
  geom_point(size=3) + 
  geom_segment(aes(x=make, 
                   xend=make, 
                   y=0, 
                   yend=mileage)) + 
  labs(title="Lollipop Chart", 
       subtitle="Make Vs Avg. Mileage", 
       caption="source: mpg") + 
  theme(axis.text.x = element_text(angle=65, vjust=0.6))

  1. Dot Plot
    Dot plots are very similar to lollipops, but without the line and is flipped to horizontal position. It emphasizes more on the rank ordering of items with respect to actual values and how far apart are the entities with respect to each other.
library(ggplot2)
library(scales)
## Warning: package 'scales' was built under R version 3.4.3
theme_set(theme_classic())

# Plot
ggplot(cty_mpg, aes(x=make, y=mileage)) + 
  geom_point(col="tomato2", size=3) +   # Draw points
  geom_segment(aes(x=make, 
                   xend=make, 
                   y=min(mileage), 
                   yend=max(mileage)), 
               linetype="dashed", 
               size=0.1) +   # Draw dashed lines
  labs(title="Dot Plot", 
       subtitle="Make Vs Avg. Mileage", 
       caption="source: mpg") +  
  coord_flip()

  1. Dumbbell Chart
    Dumbbell charts are a great tool if you wish to: 1. Visualize relative positions (like growth and decline) between two points in time. 2. Compare distance between two categories.
    In order to get the correct ordering of the dumbbells, the Y variable should be a factor and the levels of the factor variable should be in the same order as it should appear in the plot.
library(ggplot2)
library(ggalt)
theme_set(theme_classic())

health <- read.csv("https://raw.githubusercontent.com/selva86/datasets/master/health.csv")
health$Area <- factor(health$Area, levels=as.character(health$Area))  # for right ordering of the dumbells

# health$Area <- factor(health$Area)
gg <- ggplot(health, aes(x=pct_2013, xend=pct_2014, y=Area, group=Area)) + 
        geom_dumbbell(color="#a3c4dc", 
                      size=0.75, 
                      point.colour.l="#0e668b") + 
        scale_x_continuous(label=percent) + 
        labs(x=NULL, 
             y=NULL, 
             title="Dumbbell Chart", 
             subtitle="Pct Change: 2013 vs 2014", 
             caption="Source: https://github.com/hrbrmstr/ggalt") +
        theme(plot.title = element_text(hjust=0.5, face="bold"),
              plot.background=element_rect(fill="#f7f7f7"),
              panel.background=element_rect(fill="#f7f7f7"),
              panel.grid.minor=element_blank(),
              panel.grid.major.y=element_blank(),
              panel.grid.major.x=element_line(),
              axis.ticks=element_blank(),
              legend.position="top",
              panel.border=element_blank())
## Warning: Ignoring unknown parameters: point.colour.l
plot(gg)

Distribution

  1. Histogram
    By default, if only one variable is supplied, the geom_bar() tries to calculate the count. In order for it to behave like a bar chart, the stat=identity option has to be set and x and y values must be provided. #####Histogram on a continuous variable
    Histogram on a continuous variable can be accomplished using either geom_bar() or geom_histogram(). When using geom_histogram(), you can control the number of bars using the bins option. Else, you can set the range covered by each bin using binwidth. The value of binwidth is on the same scale as the continuous variable on which histogram is built. Since, geom_histogram gives facility to control both number of bins as well as binwidth, it is the preferred option to create histogram on continuous variables.
library(ggplot2)
theme_set(theme_classic())

# Histogram on a Continuous (Numeric) Variable
g <- ggplot(mpg, aes(displ)) + scale_fill_brewer(palette = "Spectral")

g + geom_histogram(aes(fill=class), 
                   binwidth = .1, 
                   col="black", 
                   size=.1) +  # change binwidth
  labs(title="Histogram with Auto Binning", 
       subtitle="Engine Displacement across Vehicle Classes")  

g + geom_histogram(aes(fill=class), 
                   bins=5, 
                   col="black", 
                   size=.1) +   # change number of bins
  labs(title="Histogram with Fixed Bins", 
       subtitle="Engine Displacement across Vehicle Classes") 

Histogram on a categorical variable

Histogram on a categorical variable would result in a frequency chart showing bars for each category. By adjusting width, you can adjust the thickness of the bars

library(ggplot2)
theme_set(theme_classic())

# Histogram on a Categorical variable
g <- ggplot(mpg, aes(manufacturer))
g + geom_bar(aes(fill=class), width = 0.5) + 
  theme(axis.text.x = element_text(angle=65, vjust=0.6)) + 
  labs(title="Histogram on Categorical Variable", 
       subtitle="Manufacturer across Vehicle Classes") 

  1. Density plot
library(ggplot2)
theme_set(theme_classic())

# Plot
g <- ggplot(mpg, aes(cty))
g + geom_density(aes(fill=factor(cyl)), alpha=0.8) + 
    labs(title="Density plot", 
         subtitle="City Mileage Grouped by Number of cylinders",
         caption="Source: mpg",
         x="City Mileage",
         fill="# Cylinders")

  1. Box Plot
    Box plot is an excellent tool to study the distribution. It can also show the distributions within multiple groups, along with the median, range and outliers if any.
    The dark line inside the box represents the median. The top of box is 75%ile and bottom of box is 25%ile. The end points of the lines (aka whiskers) is at a distance of 1.5*IQR, where IQR or Inter Quartile Range is the distance between 25th and 75th percentiles. The points outside the whiskers are marked as dots and are normally considered as extreme points.
library(ggplot2)
theme_set(theme_classic())

# Plot
g <- ggplot(mpg, aes(class, cty))
g + geom_boxplot(varwidth=T, fill="plum") + 
    labs(title="Box plot", 
         subtitle="City Mileage grouped by Class of vehicle",
         caption="Source: mpg",
         x="Class of Vehicle",
         y="City Mileage")

  1. Dot + BoxPlot
    On top of the information provided by a box plot, the dot plot can provide more clear information in the form of summary statistics by each group. The dots are staggered such that each dot represents one observation. So, in below chart, the number of dots for a given manufacturer will match the number of rows of that manufacturer in source data.
library(ggplot2)
theme_set(theme_bw())

# plot
g <- ggplot(mpg, aes(manufacturer, cty))
g + geom_boxplot() + 
  geom_dotplot(binaxis='y', 
               stackdir='center', 
               dotsize = .5, 
               fill="red") +
  theme(axis.text.x = element_text(angle=65, vjust=0.6)) + 
  labs(title="Box plot + Dot plot", 
       subtitle="City Mileage vs Class: Each dot represents 1 row in source data",
       caption="Source: mpg",
       x="Class of Vehicle",
       y="City Mileage")
## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

  1. Violin Plot

A violin plot is similar to box plot but shows the density within groups. Not much info provided as in boxplots. It can be drawn using geom_violin()

library(ggplot2)
theme_set(theme_bw())

# plot
g <- ggplot(mpg, aes(class, cty))
g + geom_violin() + 
  labs(title="Violin plot", 
       subtitle="City Mileage vs Class of vehicle",
       caption="Source: mpg",
       x="Class of Vehicle",
       y="City Mileage")

Compostion

  1. Waffle Chart
var <- mpg$class  # the categorical data 

## Prep data (nothing to change here)
nrows <- 10
df <- expand.grid(y = 1:nrows, x = 1:nrows)
categ_table <- round(table(var) * ((nrows*nrows)/(length(var))))
categ_table
## var
##    2seater    compact    midsize    minivan     pickup subcompact 
##          2         20         18          5         14         15 
##        suv 
##         26
#>   2seater    compact    midsize    minivan     pickup subcompact        suv 
#>         2         20         18          5         14         15         26 

df$category <- factor(rep(names(categ_table), categ_table))  
# NOTE: if sum(categ_table) is not 100 (i.e. nrows^2), it will need adjustment to make the sum to 100.

## Plot
ggplot(df, aes(x = x, y = y, fill = category)) + 
        geom_tile(color = "black", size = 0.5) +
        scale_x_continuous(expand = c(0, 0)) +
        scale_y_continuous(expand = c(0, 0), trans = 'reverse') +
        scale_fill_brewer(palette = "Set3") +
        labs(title="Waffle Chart", subtitle="'Class' of vehicles",
             caption="Source: mpg") + 
        theme(panel.border = element_rect(size = 2),
              plot.title = element_text(size = rel(1.2)),
              axis.text = element_blank(),
              axis.title = element_blank(),
              axis.ticks = element_blank(),
              legend.title = element_blank(),
              legend.position = "right")

  1. Pie Chart
    Pie chart, a classic way of showing the compositions is equivalent to the waffle chart in terms of the information conveyed. But is a slightly tricky to implement in ggplot2 using the coord_polar().
library(ggplot2)
theme_set(theme_classic())

# Source: Frequency table
df <- as.data.frame(table(mpg$class))
colnames(df) <- c("class", "freq")
pie <- ggplot(df, aes(x = "", y=freq, fill = factor(class))) + 
  geom_bar(width = 1, stat = "identity") +
  theme(axis.line = element_blank(), 
        plot.title = element_text(hjust=0.5)) + 
  labs(fill="class", 
       x=NULL, 
       y=NULL, 
       title="Pie Chart of class", 
       caption="Source: mpg")

pie + coord_polar(theta = "y", start=0)

# Source: Categorical variable.
# mpg$class
pie <- ggplot(mpg, aes(x = "", fill = factor(class))) + 
  geom_bar(width = 1) +
  theme(axis.line = element_blank(), 
        plot.title = element_text(hjust=0.5)) + 
  labs(fill="class", 
       x=NULL, 
       y=NULL, 
       title="Pie Chart of class", 
       caption="Source: mpg")
  
pie + coord_polar(theta = "y", start=0)

  1. Bar Chart
    By default, geom_bar() has the stat set to count. That means, when you provide just a continuous X variable (and no Y variable), it tries to make a histogram out of the data.
freqtable <- table(mpg$manufacturer)
df <- as.data.frame.table(freqtable)
head(df)
##        Var1 Freq
## 1      audi   18
## 2 chevrolet   19
## 3     dodge   37
## 4      ford   25
## 5     honda    9
## 6   hyundai   14
library(ggplot2)
theme_set(theme_classic())

# Plot
g <- ggplot(df, aes(Var1, Freq))
g + geom_bar(stat="identity", width = 0.5, fill="tomato2") + 
      labs(title="Bar Chart", 
           subtitle="Manufacturer of vehicles", 
           caption="Source: Frequency of Manufacturers from 'mpg' dataset") +
      theme(axis.text.x = element_text(angle=65, vjust=0.6))

Groups

  1. Hierarchical Dendrogram
library(ggplot2)
library(ggdendro)
## Warning: package 'ggdendro' was built under R version 3.4.3
theme_set(theme_bw())

hc <- hclust(dist(USArrests), "ave")  # hierarchical clustering

# plot
ggdendrogram(hc, rotate = TRUE, size = 2)