Let \[\mathbf{A} = \left[\begin{array} {rr} a & b \\ c & d \end{array}\right]\]
Let \[\mathbf{A^t} = \left[\begin{array} {rr} w & x \\ y & z \end{array}\right]\]
\(A^TA\) = \[\mathbf{A^tA} = \left[\begin{array} {rr} wa + xc & wb + xd \\ ya + zc & yb + zd \end{array}\right]\]
\(AA^T\) = \[\mathbf{AA^t} = \left[\begin{array} {rr} aw + by & ax + bz \\ cw + dy & cx + dz \end{array}\right]\]
A <- matrix(c(1, 2, 3, 4), ncol = 2)
t <- 2
ATA <- A^t %*% A
AAT <- A %*% A^t
identical(ATA, AAT)
## [1] FALSE
A <- matrix(c(1, 2, 1, 2, 1, 2, 1, 2, 1), nrow = 3, byrow = T)
A
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 2 1 2
## [3,] 1 2 1
#transpose A
t(A)
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 2 1 2
## [3,] 1 2 1
#Write equations for $A^T A = AA^T$
ATA <- t(A) %*% A
AAT <- A %*% t(A)
AAT == ATA
## [,1] [,2] [,3]
## [1,] TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE
## [3,] TRUE TRUE TRUE
I’m also going to use help that I found on this
A <- matrix (c(1, 2, 2, 3, 4, 0, 0, 0, 1), ncol = 3, byrow = F)
A
## [,1] [,2] [,3]
## [1,] 1 3 0
## [2,] 2 4 0
## [3,] 2 0 1
function_lu <- function(A){
L <- diag(x = 1, ncol = ncol(A), nrow = nrow(A))
U <- A
m21 <- -A[2,1] / A[1,1]
L1 <- matrix(c(1,0,0,m21,1,0,0,0,1), nrow=3, byrow = T)
A2 <- L %*% A
m31 <- -A[3,1] / A[1,1]
L2 <- matrix(c(1,0,0,0,1,0,m31,0,1), nrow=3, byrow = T)
A3 <- L2 %*% A2
m32 <- -A[3,2] / A[2,2]
L3 <- matrix(c(1,0,0,0,1,0,0,m32,1), nrow = 3, byrow = T)
L <- solve (L1) %*% solve (L2) %*% solve (L3)
A <- L %*% U
print (A)
print (L)
print (U)
(L %*% U == A)
}
function_lu(A)
## [,1] [,2] [,3]
## [1,] 1 3 0
## [2,] 4 10 0
## [3,] 4 6 1
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 2 1 0
## [3,] 2 0 1
## [,1] [,2] [,3]
## [1,] 1 3 0
## [2,] 2 4 0
## [3,] 2 0 1
## [,1] [,2] [,3]
## [1,] TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE
## [3,] TRUE TRUE TRUE