## installed_and_loaded.packages.
## prettydoc TRUE
## psych TRUE
## knitr TRUE
## tidyverse TRUE
## ggthemes TRUE
## scales TRUE
Principles of Data Visualization and Introduction to ggplot2
I have provided you with data about the 5,000 fastest growing companies in the US, as compiled by Inc. magazine. lets read this in:
inc <- read.csv("https://raw.githubusercontent.com/charleyferrari/CUNY_DATA_608/master/module1/Data/inc5000_data.csv", header= TRUE)And lets preview this data:
head(inc)## Rank Name Growth_Rate Revenue
## 1 1 Fuhu 421.48 1.179e+08
## 2 2 FederalConference.com 248.31 4.960e+07
## 3 3 The HCI Group 245.45 2.550e+07
## 4 4 Bridger 233.08 1.900e+09
## 5 5 DataXu 213.37 8.700e+07
## 6 6 MileStone Community Builders 179.38 4.570e+07
## Industry Employees City State
## 1 Consumer Products & Services 104 El Segundo CA
## 2 Government Services 51 Dumfries VA
## 3 Health 132 Jacksonville FL
## 4 Energy 50 Addison TX
## 5 Advertising & Marketing 220 Boston MA
## 6 Real Estate 63 Austin TX
summary(inc)## Rank Name Growth_Rate
## Min. : 1 (Add)ventures : 1 Min. : 0.340
## 1st Qu.:1252 @Properties : 1 1st Qu.: 0.770
## Median :2502 1-Stop Translation USA: 1 Median : 1.420
## Mean :2502 110 Consulting : 1 Mean : 4.612
## 3rd Qu.:3751 11thStreetCoffee.com : 1 3rd Qu.: 3.290
## Max. :5000 123 Exteriors : 1 Max. :421.480
## (Other) :4995
## Revenue Industry Employees
## Min. :2.000e+06 IT Services : 733 Min. : 1.0
## 1st Qu.:5.100e+06 Business Products & Services: 482 1st Qu.: 25.0
## Median :1.090e+07 Advertising & Marketing : 471 Median : 53.0
## Mean :4.822e+07 Health : 355 Mean : 232.7
## 3rd Qu.:2.860e+07 Software : 342 3rd Qu.: 132.0
## Max. :1.010e+10 Financial Services : 260 Max. :66803.0
## (Other) :2358 NA's :12
## City State
## New York : 160 CA : 701
## Chicago : 90 TX : 387
## Austin : 88 NY : 311
## Houston : 76 VA : 283
## San Francisco: 75 FL : 282
## Atlanta : 74 IL : 273
## (Other) :4438 (Other):2764
Non-visual exploration
Think a bit on what these summaries mean. Use the space below to add some more relevant non-visual exploratory information you think helps you understand this data:
Let’s create a table that shows the class types, NA counts & unique values of each variable
metadata <- function(df){
###Takes a data frame & Checks NAs, class types, inspects the unique values
df_len <- nrow(df)
NA_ct = as.vector(rapply(df, function(x) sum(is.na(x))))
#create dataframe
df_metadata <- data.frame(
class_type = rapply(df, class),
n_rows = rapply(df, length),
complete_cases = sum(complete.cases(df)),
NA_ct = NA_ct,
NA_pct = NA_ct / df_len * 100,
unique_value_ct = rapply(df, function(x)length(unique(x))),
most_common_values_sample = rapply(inc, function(x) str_replace(paste(names(sort(summary(as.factor(x)), decreasing=T))[1:5], collapse = '; '), "\\(Other\\); ", ""))
)
return(df_metadata)
}
kable(metadata(inc), digits = 2)| class_type | n_rows | complete_cases | NA_ct | NA_pct | unique_value_ct | most_common_values_sample | |
|---|---|---|---|---|---|---|---|
| Rank | integer | 5001 | 4989 | 0 | 0.00 | 4999 | 3424; 5000; 1; 2 |
| Name | factor | 5001 | 4989 | 0 | 0.00 | 5001 | (Add)ventures; @Properties; 1-Stop Translation USA; 110 Consulting |
| Growth_Rate | numeric | 5001 | 4989 | 0 | 0.00 | 1147 | 0.4; 0.48; 0.53; 0.65 |
| Revenue | numeric | 5001 | 4989 | 0 | 0.00 | 1069 | 2100000; 2200000; 2400000; 4600000 |
| Industry | factor | 5001 | 4989 | 0 | 0.00 | 25 | IT Services; Business Products & Services; Advertising & Marketing; Health; Software |
| Employees | integer | 5001 | 4989 | 12 | 0.24 | 692 | 15; 25; 30; 12 |
| City | factor | 5001 | 4989 | 0 | 0.00 | 1519 | New York; Chicago; Austin; Houston |
| State | factor | 5001 | 4989 | 0 | 0.00 | 52 | CA; TX; NY; VA; FL |
Let’s use the psych package’s describe function to create a table that shows a more comprehensive set of summary statistics for each numerical variable.
metrics <- function(df){
metrics_only <- df[, which(rapply(df, class) %in% c("numeric", "integer"))]
df_metrics <- t(describe(metrics_only, quant = c(.25,.75)))[2:15,]
return(df_metrics)
}
kable(metrics(inc), digits = 2, format.args = list(big.mark = ',', scientific = F, drop0trailing = T))| Rank | Growth_Rate | Revenue | Employees | |
|---|---|---|---|---|
| n | 5,001 | 5,001 | 5,001 | 4,989 |
| mean | 2,501.64 | 4.61 | 48,222,535.49 | 232.72 |
| sd | 1,443.51 | 14.12 | 240,542,281.14 | 1,353.13 |
| median | 2,502 | 1.42 | 10,900,000 | 53 |
| trimmed | 2,501.73 | 2.14 | 17,334,966.26 | 81.78 |
| mad | 1,853.25 | 1.22 | 10,674,720 | 53.37 |
| min | 1 | 0.34 | 2,000,000 | 1 |
| max | 5,000 | 421.48 | 10,100,000,000 | 66,803 |
| range | 4,999 | 421.14 | 10,098,000,000 | 66,802 |
| skew | 0 | 12.55 | 22.17 | 29.81 |
| kurtosis | -1.2 | 242.34 | 722.66 | 1,268.67 |
| se | 20.41 | 0.2 | 3,401,441.44 | 19.16 |
| Q0.25 | 1,252 | 0.77 | 5,100,000 | 25 |
| Q0.75 | 3,751 | 3.29 | 28,600,000 | 132 |
Question 1
Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state).
There are a lot of States, so consider which axis you should use.
This visualization is ultimately going to be consumed on a ‘portrait’ oriented screen (ie taller than wide), which should further guide your layout choices.
ggplot(data = inc) +
geom_bar(mapping = aes(x = reorder(State, State, function(x) length(x)))) +
labs(x = "State",
title = "Number of Companies by State") +
theme(axis.text.y = element_text(size=6, color="black", face = "bold"),
plot.margin=unit(c(0,3,0,3), "cm")) +
coord_flip()Question 2
Lets dig in on the state with the 3rd most companies in the data set.
Imagine you work for the state and are interested in how many people are employed by companies in different industries.
Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s
complete.cases()function.)In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.
state_third_most <- names(sort(table(inc$State), decreasing = T))[3]
df_third_most <- subset(inc, State == state_third_most)
df_third_most <- df_third_most[complete.cases(df_third_most),]Plot 2.1
One way to visualize these distributions is to resize the plot limits so that it does not display the most extreme outliers.
However, some of the boxes are still too tiny to see.
#calculate some parameters to deal with the outliers
bpstats <- boxplot(Employees ~ Industry, data = df_third_most, plot = F)$stats
ylimits <- c(0, ceiling(max(bpstats) / 100)) * 100
ybreaks <- seq(ylimits[1], ylimits[2], by = 200)
outliers_not_shown <- paste(sum(df_third_most$Employees > max(ylimits)), "outlier(s) not displayed")
#to preserve alphabetical order when flipped
reordered_x_lab <- scale_x_discrete(limits = rev(levels(inc$Industry)))
plt_base <- ggplot(data = df_third_most, mapping = aes(x = Industry, y = Employees))
plt_base +
geom_boxplot() +
labs(title = "Company Sizes in NY by Industry",
caption = paste("Red dot = mean", outliers_not_shown, sep = "\n")) +
reordered_x_lab +
scale_y_continuous(breaks = ybreaks) +
stat_summary(fun.y=mean, geom="point", size=2, color = "red") +
coord_flip(ylim = ylimits) +
theme_fivethirtyeight()Plot 2.2
Another way to visualize these distributions is perform a log function in order to rescale the extreme outliers.
Now the extreme outliers can be seen.
plt_base +
geom_boxplot() +
reordered_x_lab +
scale_y_log10(breaks = 10^(1:4)) +
labs(title = "NY Company Sizes (log10) by Industry") +
coord_flip() +
theme_fivethirtyeight()Question 3
Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.
Plot 3.1
I’m assuming that we are doing the revenue/employee division at the company-level granularity. Otherwise I believe that showing distribution per industry doesn’t make any sense.
I removed 12 incomplete cases.
First, let’s resize the plot limits so that it does not display the most extreme outliers.
#create data
inc_q3 <- drop_na(data.frame(
Industry = inc$Industry,
revenue_per_employee = with(inc, Revenue/Employees)
))
#calculate some parameters to deal with the outliers
bpstats <- boxplot(revenue_per_employee ~ Industry, data = inc_q3, plot = F)$stats
ylimits <- c(0, ceiling(max(bpstats) / 100000) * 100000)
ybreaks <- seq(0, ylimits[2], by = 500000)
outliers_not_shown <- paste(sum(inc_q3$revenue_per_employee > max(ylimits), na.rm = T), "outlier(s) not displayed")
#plot
plt_base2 <- ggplot(data = inc_q3, mapping = aes(x = Industry, y = revenue_per_employee))
plt_base2 +
geom_boxplot(outlier.size = 1) +
labs(title = "Distribution of Revenue $ per Employee",
caption = paste("Red dot = mean", outliers_not_shown, sep = "\n")) +
reordered_x_lab +
scale_y_continuous(breaks = ybreaks, labels = comma(ybreaks)) +
stat_summary(fun.y=mean, geom="point", size=2, color = "red") +
coord_flip(ylim = ylimits) +
theme_fivethirtyeight()Plot 3.2
- Now, let’s use the log10 scale so we can see the most extreme outliers.
breaks_log10 <- 10^(4:7)
plt_base2 +
geom_boxplot(outlier.size = 1) +
reordered_x_lab +
scale_y_log10(breaks = breaks_log10, labels = comma(breaks_log10)) +
labs(title = "Distr. of Revenue $ per Employee (log10)") +
coord_flip() +
theme_fivethirtyeight()