library(dplyr)
mycolors = c("darkorange" ,"dodgerblue","limegreen","navy",
"mediumpurple","royalblue3", "darkolivegreen4",
"firebrick" ,"hotpink", "plum4","blue" , "magenta2")
mycols = c("#FF8C007F", "#1E90FF7F", "#32CD327F" ,"#0000807F" ,"#FF69B47F", "#8B668B7F", "#0000FF7F" ,
"#EE00EE7F", "#9370DB7F","#B222227F", "#6E8B3D7F" ,"#3A5FCD7F")
op = par(no.readonly = T)
# par0 = par(no.readonly = T)
# par0$mfrow = c(1,2)
# par0$pch=19
ptrack = read.delim('feb8_4_pmaster_BS5_BS6_BS8_BS9_olti_halo_chlorox.txt',stringsAsFactors = F,header=T)
source('~/RProjects/dec16_2017_barseq/feb9_scratchpad.R')
geneDir = "/home/common/barseq_gg_pdata_exp_info/summary_barseq"
#source('~/RProjects/dec16_2017_barseq/jan29_working2_source_functions_barseq.R', echo=TRUE)
countDir = '/home/common/barseq_output'
#expDir = '/home/common/barseq_gg_pdata_exp_info'
countFiles = list.files(countDir) # filenames count matrices
countFiles = countFiles[grep('rds',countFiles)]
cfiles = paste(countDir,countFiles, sep = "/")
ptrack = ptrack %>% arrange
ptrk = distinct(ptrack,file,short)
pfile= ptrk$file
pshort = ptrk$short
wcount = match(pfile,cfiles)
cfiles = cfiles[wcount]
pfile == cfiles
## [1] TRUE TRUE TRUE TRUE
tmp = NULL
for (i in 1:length(cfiles)) {
tmp[[i]] = mybarseqrows(readRDS(cfiles[i]))
names(tmp)[i] = cfiles[i]
}
names(tmp) = pshort
ncoln = sapply(tmp,ncol)
nrow = sapply(tmp,nrow)
coln = sapply(tmp,colnames)
coln = lapply(coln,function(x) x = gsub('BS-0','BS',x))
for (i in 1:length(tmp)) colnames(tmp[[i]]) = coln[[i]]
print(coln)
## $BS5_7201_feb2018
## [1] "BS138" "BS139" "BS140" "BS141" "BS142" "BS143" "BS144" "BS145"
## [9] "BS146" "BS147" "BS148" "BS149" "BS150" "BS151" "BS152" "BS153"
## [17] "BS154" "BS155" "BS156" "BS157" "BS158" "BS159" "BS160" "BS161"
## [25] "BS162" "BS163" "BS164" "BS165" "BS166" "BS167" "BS168" "BS169"
## [33] "BS170" "BS171" "BS172" "BS173"
##
## $BS6_7371_feb2018
## [1] "BS210" "BS211" "BS212" "BS213" "BS214" "BS215" "BS216" "BS217"
## [9] "BS218" "BS219" "BS220" "BS221" "BS222" "BS223" "BS224" "BS225"
## [17] "BS226" "BS227" "BS228" "BS229" "BS368" "BS369" "BS370" "BS371"
## [25] "BS372"
##
## $BS8_14778_feb2018
## [1] "BS326" "BS327" "BS328" "BS329" "BS332" "BS333" "BS334" "BS335"
## [9] "BS336" "BS337" "BS338"
##
## $BS9_18674_feb2018
## [1] "BS339" "BS340" "BS341" "BS342" "BS343" "BS344" "BS345" "BS346"
## [9] "BS347" "BS348" "BS349" "BS350" "BS351" "BS352" "BS353" "BS354"
## [17] "BS355" "BS356" "BS357" "BS358" "BS359" "BS360" "BS361" "BS362"
## [25] "BS363" "BS364" "BS365" "BS366" "BS367"
coln = sapply(tmp,colnames)
clen = as.vector(sapply(coln,length))
names(clen)=names(coln)
ucoln = unlist(coln,use.names = F)
names(ucoln)= rep(names(clen),times = clen)
coless = sapply(tmp,function(x) x = colSums(x[ess$strain,]))
colnon = sapply(tmp,function(x) x = colSums(x[noness$strain,]))
coless = unlist(coless,use.names = F)
colnon = unlist(colnon,use.names = F)
names(coless) = names(ucoln)
names(colnon) = names(ucoln)
print(table(duplicated(colnon)))
##
## FALSE
## 101
print(table(duplicated(coless)))
##
## FALSE
## 101
eraw = lapply(tmp,function(x) x = mystats(x[ess$strain,]))
nraw = lapply(tmp,function(x) x = mystats(x[noness$strain,]))
names(xess)=names(tmp)
names(xnon)=names(tmp)
ecoln = sapply(xess,ncol)
ncoln = sapply(xnon,ncol)
wecoln = which(ecoln <= 2 )
wncoln = which(ncoln <= 2 )
if (length(wecoln)>0) xess = xess[-wecoln]
if(sum(ecoln)== 0) {
xess = NA
print('no essential samples pass QC')
}
if (length(wncoln)>0) xnon = xnon[-wncoln]
if(sum(ncoln)== 0) {
xnon = NA
print('no nonessential samples pass QC')
}
ecoln = sapply(xess,ncol)
ncoln = sapply(xnon,ncol)
cat("pass_essQC:")
## pass_essQC:
ecoln
## BS5_7201_feb2018 BS8_14778_feb2018 BS9_18674_feb2018
## 10 11 18
cat("pass_nonQC:")
## pass_nonQC:
ncoln
## BS5_7201_feb2018 BS6_7371_feb2018 BS8_14778_feb2018 BS9_18674_feb2018
## 27 24 8 11
xess = lapply(xess,mysumtags)
## [1] 2264 10
## [1] 1108 10
## [1] 2264 11
## [1] 1108 11
## [1] 2264 18
## [1] 1108 18
xnon = lapply(xnon,mysumtags)
## [1] 10216 27
## [1] 4999 27
## [1] 10216 24
## [1] 4999 24
## [1] 10216 8
## [1] 4999 8
## [1] 10216 11
## [1] 4999 11
estats = lapply(xess,mystats)
nstats = lapply(xnon,mystats)
for (i in 1:elen) {
print(kable(mystats(xess[[i]]),
caption = paste0("table",i," stats summed essential tags ",enam[i])))
mybarplotnull(xess[[i]],group = factor(lecolx[[i]]),col = mycols[i],
nam=paste("essential",enam[i]))
}
##
##
## Table: table1 stats summed essential tags BS5_7201_feb2018
##
## min Q1 median mean Q3 max libsum perc05 perc10 perc90 perc95 zeros percZeros
## ------ ---- -------- ------- ----- -------- ------ -------- ------- ------- ------- ------- ------ ----------
## BS149 0 467.00 882.5 991 1366.25 6564 1097778 22 4030 48 3872 19 2
## BS153 0 1022.75 1995.5 2296 3162.00 14256 2543879 143 4901 301 4694 22 2
## BS155 0 945.00 1766.0 2075 2883.50 11171 2299270 1910 23 4609 38 19 2
## BS157 0 560.00 1030.5 1149 1598.25 5380 1273053 2329 164 5606 234 24 2
## BS159 0 843.50 1504.0 1644 2296.25 7732 1821533 50 2235 21 2904 17 2
## BS161 0 1132.75 2071.5 2348 3258.50 15953 2601648 308 2657 158 3556 18 2
## BS167 0 458.75 854.0 965 1346.00 4894 1069280 4375 37 1811 50 24 2
## BS169 0 1029.50 1889.5 2066 2880.75 9532 2289655 5284 237 2258 344 24 2
## BS171 0 753.50 1449.0 1566 2194.50 6979 1735618 50 3088 59 4108 23 2
## BS173 0 1028.50 1987.5 2163 3013.25 14361 2397102 296 3721 342 5088 20 2
##
##
## Table: table2 stats summed essential tags BS8_14778_feb2018
##
## min Q1 median mean Q3 max libsum perc05 perc10 perc90 perc95 zeros percZeros
## ------ ---- --------- -------- ------ --------- ------- --------- ------- ------- ------- ------- ------ ----------
## BS326 0 13104.00 24648.5 26962 38641.75 122538 29873810 226 39292 65173 723 37 3
## BS327 0 12102.75 21987.0 23450 33018.00 122119 25982389 2893 725 75955 13904 24 2
## BS328 0 7887.50 15865.0 17428 25096.00 97947 19310680 52498 3646 384 16377 42 4
## BS329 0 14675.00 31626.0 30800 43327.50 135358 34126201 58860 54899 2439 182 20 2
## BS332 0 9653.00 17741.5 18481 25954.00 91697 20477067 430 61301 23907 1042 19 2
## BS333 0 20406.75 36650.5 36758 51233.75 173910 40728133 2942 450 28175 20499 15 1
## BS334 0 7658.25 12971.0 13609 19330.75 43838 15078299 43297 2866 333 23709 15 1
## BS335 0 9437.50 19764.5 21429 32104.75 96180 23743673 51171 33701 2899 303 15 1
## BS336 0 3696.50 6879.0 7373 10503.25 34232 8169428 67 38443 40261 1749 21 2
## BS337 0 5117.25 10845.5 11061 15761.50 49807 12255895 1852 911 46399 32760 25 2
## BS338 0 6451.25 17531.0 17498 25685.75 66186 19387789 33856 5954 115 36991 27 2
##
##
## Table: table3 stats summed essential tags BS9_18674_feb2018
##
## min Q1 median mean Q3 max libsum perc05 perc10 perc90 perc95 zeros percZeros
## ------ ---- -------- -------- ------ --------- ------ --------- ------- ------- ------- ------- ------ ----------
## BS340 0 8093.25 14357.5 14759 20841.50 68092 16352479 404 27063 200 9601 12 1
## BS341 0 4525.50 8340.5 8575 11824.25 36493 9501415 2309 30417 919 10924 16 1
## BS342 0 6400.25 11874.0 12122 17127.00 44082 13430934 26428 230 13835 134 15 1
## BS343 0 4330.00 7543.5 7773 10864.75 28986 8612809 29874 1189 15958 716 15 1
## BS344 0 7954.25 14275.5 14836 21249.50 72612 16437909 312 13372 129 15032 16 1
## BS345 0 3740.75 6891.0 7298 10450.75 30678 8086020 1448 15208 591 17832 19 2
## BS346 0 5077.00 8651.5 8860 12309.25 34184 9816468 15526 425 11052 168 12 1
## BS347 0 3414.00 6063.5 6291 8853.50 24600 6970742 18491 1447 13065 708 15 1
## BS349 0 1725.75 3248.5 3435 4898.50 18064 3806424 472 15479 95 8517 20 2
## BS351 0 3612.75 7090.5 7390 10714.75 30514 8187727 2068 18307 427 9624 19 2
## BS353 0 2822.50 5494.0 5871 8409.50 32292 6505418 21762 228 10833 20 21 2
## BS355 0 2609.25 5369.5 5687 8271.25 30911 6301091 24872 1019 12730 112 18 2
## BS357 0 2004.50 3887.5 4148 6038.50 17819 4596235 273 11413 84 2900 18 2
## BS359 0 2564.50 4804.0 5086 7282.25 25263 5635547 1061 12844 441 3291 18 2
## BS361 0 3615.50 7542.5 7997 11590.00 36589 8861077 13952 77 7858 59 18 2
## BS363 0 2548.00 4577.5 4693 6675.75 18774 5200293 16017 394 9041 338 17 2
## BS365 0 527.50 1476.5 1501 2256.00 9738 1663042 458 6438 105 7195 29 3
## BS367 0 1687.75 3522.5 3713 5376.25 17011 4113614 2297 7300 519 8164 23 2
for (i in 1:nlen) {
print(kable(mystats(xnon[[i]]),
caption = paste0("table",i," stats summed nonessential tags ",nnam[i])))
mybarplotnull(xnon[[i]],group = factor(lncolx[[i]]),col = mycols[i],
nam=paste("nonessential",nnam[i]))
}
##
##
## Table: table1 stats summed nonessential tags BS5_7201_feb2018
##
## min Q1 median mean Q3 max libsum perc05 perc10 perc90 perc95 zeros percZeros
## ------ ---- ------- ------- ----- ------- ------ --------- ------- ------- ------- ------- ------ ----------
## BS146 0 1319.5 3258 3627 5048.5 33729 18132687 0 5897 4625 204 291 6
## BS148 0 638.5 1641 1843 2580.0 17823 9215364 66 0 5702 1893 348 7
## BS149 0 549.5 982 1055 1453.0 5693 5274417 7287 21 1 2238 238 5
## BS150 0 133.0 407 488 703.0 5846 2437121 9078 2195 350 0 437 9
## BS151 0 254.0 447 477 656.5 2560 2384497 0 2728 4663 37 248 5
## BS152 0 580.5 1730 2058 2999.5 21111 10286336 29 2 5563 5035 337 7
## BS153 0 1240.5 2215 2499 3452.0 12958 12493639 3781 313 0 6309 233 5
## BS154 0 402.5 971 1079 1498.0 10200 5394318 4756 4144 14 4 296 6
## BS155 0 1200.0 2015 2216 3036.5 13466 11076807 1 4944 4279 411 234 5
## BS156 0 155.0 386 431 593.0 4005 2152546 167 0 5365 3927 404 8
## BS157 0 656.5 1115 1205 1652.0 7750 6024380 1954 6 1 4546 228 5
## BS158 0 458.0 1122 1260 1755.0 12291 6296869 2310 882 105 0 364 7
## BS159 0 988.0 1641 1776 2423.0 9094 8878159 0 1102 948 24 235 5
## BS160 0 832.5 2069 2275 3159.5 22685 11374095 3 2 1105 2700 320 6
## BS161 0 1318.5 2332 2515 3465.0 14130 12572260 1054 160 0 3319 237 5
## BS162 0 622.5 1812 2045 2924.0 22823 10222686 1307 2231 18 4 350 7
## BS163 0 274.0 488 517 705.0 2786 2584662 1 2628 6652 324 249 5
## BS164 0 972.5 2778 3217 4648.0 30751 16080019 78 0 8348 3088 313 6
## BS165 0 264.0 459 512 698.5 2721 2561219 891 20 0 3642 260 5
## BS166 0 693.5 1708 1857 2568.5 16311 9285242 1058 2570 90 0 383 8
## BS167 0 547.0 952 1027 1416.0 6327 5133731 0 3176 969 38 247 5
## BS168 0 914.5 2271 2487 3449.0 22556 12432919 11 3 1173 4903 354 7
## BS169 0 1158.5 2031 2151 2969.0 12971 10751019 4355 305 0 6064 225 5
## BS170 0 484.0 1236 1335 1846.0 12271 6671412 5404 3250 34 1 375 8
## BS171 0 900.0 1576 1681 2310.5 8620 8400995 3 3850 3735 443 237 5
## BS172 0 881.0 2221 2425 3365.5 23950 12122672 331 0 4610 4236 351 7
## BS173 0 1222.0 2156 2304 3146.5 13969 11519462 4806 39 1 5056 244 5
##
##
## Table: table2 stats summed nonessential tags BS6_7371_feb2018
##
## min Q1 median mean Q3 max libsum perc05 perc10 perc90 perc95 zeros percZeros
## ------ ---- ------- ------- ----- ------- ------ --------- ------- ------- ------- ------- ------ ----------
## BS210 0 275.5 675 751 1043.0 6572 3753164 0 0 0 0 403 8
## BS211 0 272.0 639 703 966.5 7566 3514720 13 16 11 15 392 8
## BS212 0 224.0 537 589 816.0 5206 2946048 1520 1760 1286 1265 386 8
## BS213 0 296.0 704 775 1079.0 7521 3874784 1903 2262 1622 1601 380 8
## BS214 0 273.5 666 740 1029.5 6675 3699775 0 0 0 0 390 8
## BS215 0 263.0 620 689 948.0 6431 3442747 14 14 13 14 393 8
## BS216 0 332.5 803 889 1229.0 9029 4442461 1416 1874 1385 1141 387 8
## BS217 0 332.0 821 920 1277.5 8503 4600633 1758 2344 1762 1442 361 7
## BS218 0 318.0 757 843 1173.5 7893 4215738 0 0 0 0 394 8
## BS219 0 327.0 790 877 1214.0 8840 4382993 12 17 26 10 365 7
## BS220 0 262.0 672 742 1032.5 7068 3709990 1170 1699 1346 1858 404 8
## BS221 0 278.0 674 746 1027.0 7182 3727229 1470 2138 1698 2390 359 7
## BS222 0 224.0 569 637 900.0 5934 3183432 0 0 0 0 398 8
## BS223 0 259.0 631 694 969.0 7331 3467507 13 15 87 14 398 8
## BS224 0 303.0 626 687 937.0 6122 3432735 1548 1761 5464 1641 311 6
## BS225 0 1123.0 2534 2789 3836.5 26082 13941470 1905 2194 6950 2083 321 6
## BS226 0 372.5 820 898 1238.5 7778 4490712 0 0 0 0 354 7
## BS227 0 326.0 747 820 1128.5 7456 4101276 14 11 25 13 372 7
## BS228 0 252.0 587 643 891.0 5678 3214675 1488 1521 1776 1378 360 7
## BS229 0 227.0 514 569 781.0 4691 2846412 1883 1876 2241 1741 390 8
## BS368 0 300.5 799 908 1279.0 8910 4539171 0 0 0 0 398 8
## BS369 0 296.0 722 810 1125.5 7755 4049437 15 15 22 22 395 8
## BS370 0 261.5 619 687 959.0 6639 3433528 1372 1491 1644 2180 393 8
## BS372 0 398.5 953 1072 1467.0 10027 5359584 1728 1865 2033 2772 389 8
##
##
## Table: table3 stats summed nonessential tags BS8_14778_feb2018
##
## min Q1 median mean Q3 max libsum perc05 perc10 perc90 perc95 zeros percZeros
## ------ ---- --- ------- ----- ---- ------- -------- ------- ------- ------- ------- ------ ----------
## BS326 0 0 0 375 0 110116 1876553 0 0 0 0 4481 90
## BS327 0 0 0 306 0 91485 1530156 0 0 0 0 4551 91
## BS328 0 0 0 871 927 67457 4351691 1 2713 2 1 3234 65
## BS329 0 0 0 384 0 149018 1921533 1 3872 304 21 3911 78
## BS332 0 0 0 240 0 83251 1197286 0 0 0 0 3987 80
## BS333 0 0 0 459 1 156694 2296849 0 0 0 0 3748 75
## BS335 0 0 0 239 0 83062 1192392 0 197 190 9 4247 85
## BS338 0 0 0 225 0 60379 1123263 1 320 338 261 4234 85
##
##
## Table: table4 stats summed nonessential tags BS9_18674_feb2018
##
## min Q1 median mean Q3 max libsum perc05 perc10 perc90 perc95 zeros percZeros
## ------ ---- ------- ------- ----- ------- ------ --------- ------- ------- ------- ------- ------ ----------
## BS339 0 1162.5 2774 3051 4242.0 27978 15253388 0 4039 2302 25 371 7
## BS348 0 304.5 735 837 1178.5 8196 4182818 56 0 2906 4394 440 9
## BS350 0 475.0 1408 1574 2233.5 15160 7867578 6116 40 0 5468 385 8
## BS352 0 910.0 2729 3185 4584.5 29925 15922881 7698 6648 14 0 368 7
## BS354 0 603.5 1616 1858 2627.0 20757 9288053 0 8292 1963 8 385 8
## BS356 0 357.0 953 1102 1564.0 13467 5510482 16 0 2414 1565 380 8
## BS358 0 313.5 819 934 1328.0 10587 4671403 1693 30 0 1947 409 8
## BS360 0 495.5 1311 1518 2130.5 19018 7588753 2116 3838 23 0 382 8
## BS362 0 629.0 1771 2074 2969.0 23996 10367561 0 4775 3176 13 379 8
## BS364 0 202.0 595 722 1034.0 7502 3611423 20 0 3953 1778 397 8
## BS366 0 269.0 732 853 1196.5 10805 4264054 3246 16 0 2239 393 8
mynormdensity(do.call(cbind,xess),group = ecolx,filename = "Figs/ess_norm_dens.png")
## png
## 2
mynormdensity(do.call(cbind,xnon),group = ncolx,filename = "Figs/non_norm_dens.png")
## png
## 2
Figure 1a: Density distribution of essential raw and normalized counts.
Figure 1b: Density distribution of nonessential raw and normalized counts.
Visualization of first principal components of the PCA. The first principal component (PC1) is expected to separate samples by biological or technical variability is the main source of variance in the data. Here we see grouping by barseq run, though the sample have not been rigorously normalized together nor has any low count threshold been applied
myPCAPlot(do.call(cbind,xess),group = ecolx,filename = "Figs/ess_PCA.png")
## png
## 2
myPCAPlot(do.call(cbind,xnon),group = ncolx,filename = "Figs/non_PCA.png")
## png
## 2
Figure 2a: PCA essential with percentages of variance associated with each axis.
Figure 2b: PCA nonessential
eraw = lapply(tmp,function(x) x = mystats(x[ess$strain,]))
nraw = lapply(tmp,function(x) x = mystats(x[noness$strain,]))
eraw = do.call(rbind,eraw,quote = F)
nraw= do.call(rbind,nraw,quote = F)
rownames(eraw ) = paste0('ess:',rownames(eraw ))
rownames(nraw ) = paste0('noness:',rownames(nraw ))
eraw$pool = 'essential'
nraw$pool = 'nonessential'
stats = rbind(eraw,nraw)
xdf = data.frame(file = names(ucoln),colnam = ucoln,essCPM = coless,nonCPM = colnon,stringsAsFactors = F)
tally = t(sapply(tmp,tally_CPM))
write.table(xdf,"feb9_masterfile_descrepancy.txt",sep = '\t')
write.table(stats,"feb9_stats_master_count_matrices.txt",sep = '\t')
kable(xdf,caption = 'summary of total counts')
| file | colnam | essCPM | nonCPM |
|---|---|---|---|
| BS5_7201_feb2018 | BS138 | 140 | 482298 |
| BS5_7201_feb2018 | BS139 | 82851 | 401653 |
| BS5_7201_feb2018 | BS140 | 200 | 599059 |
| BS5_7201_feb2018 | BS141 | 26886 | 130819 |
| BS5_7201_feb2018 | BS142 | 66 | 182546 |
| BS5_7201_feb2018 | BS143 | 11919 | 56071 |
| BS5_7201_feb2018 | BS144 | 80 | 268677 |
| BS5_7201_feb2018 | BS145 | 68693 | 320940 |
| BS5_7201_feb2018 | BS146 | 5613 | 18132687 |
| BS5_7201_feb2018 | BS147 | 432 | 3065 |
| BS5_7201_feb2018 | BS148 | 3008 | 9215364 |
| BS5_7201_feb2018 | BS149 | 1097778 | 5274417 |
| BS5_7201_feb2018 | BS150 | 551 | 2437121 |
| BS5_7201_feb2018 | BS151 | 493562 | 2384497 |
| BS5_7201_feb2018 | BS152 | 2692 | 10286336 |
| BS5_7201_feb2018 | BS153 | 2543879 | 12493639 |
| BS5_7201_feb2018 | BS154 | 2316 | 5394318 |
| BS5_7201_feb2018 | BS155 | 2299270 | 11076807 |
| BS5_7201_feb2018 | BS156 | 724 | 2152546 |
| BS5_7201_feb2018 | BS157 | 1273053 | 6024380 |
| BS5_7201_feb2018 | BS158 | 1741 | 6296869 |
| BS5_7201_feb2018 | BS159 | 1821533 | 8878159 |
| BS5_7201_feb2018 | BS160 | 3634 | 11374095 |
| BS5_7201_feb2018 | BS161 | 2601648 | 12572260 |
| BS5_7201_feb2018 | BS162 | 2984 | 10222686 |
| BS5_7201_feb2018 | BS163 | 533741 | 2584662 |
| BS5_7201_feb2018 | BS164 | 5009 | 16080019 |
| BS5_7201_feb2018 | BS165 | 523348 | 2561219 |
| BS5_7201_feb2018 | BS166 | 2881 | 9285242 |
| BS5_7201_feb2018 | BS167 | 1069280 | 5133731 |
| BS5_7201_feb2018 | BS168 | 4475 | 12432919 |
| BS5_7201_feb2018 | BS169 | 2289655 | 10751019 |
| BS5_7201_feb2018 | BS170 | 1997 | 6671412 |
| BS5_7201_feb2018 | BS171 | 1735618 | 8400995 |
| BS5_7201_feb2018 | BS172 | 3953 | 12122672 |
| BS5_7201_feb2018 | BS173 | 2397102 | 11519462 |
| BS6_7371_feb2018 | BS210 | 1192 | 3753164 |
| BS6_7371_feb2018 | BS211 | 1097 | 3514720 |
| BS6_7371_feb2018 | BS212 | 1061 | 2946048 |
| BS6_7371_feb2018 | BS213 | 1441 | 3874784 |
| BS6_7371_feb2018 | BS214 | 1372 | 3699775 |
| BS6_7371_feb2018 | BS215 | 1529 | 3442747 |
| BS6_7371_feb2018 | BS216 | 1617 | 4442461 |
| BS6_7371_feb2018 | BS217 | 1684 | 4600633 |
| BS6_7371_feb2018 | BS218 | 1296 | 4215738 |
| BS6_7371_feb2018 | BS219 | 1489 | 4382993 |
| BS6_7371_feb2018 | BS220 | 1122 | 3709990 |
| BS6_7371_feb2018 | BS221 | 3216 | 3727229 |
| BS6_7371_feb2018 | BS222 | 909 | 3183432 |
| BS6_7371_feb2018 | BS223 | 1313 | 3467507 |
| BS6_7371_feb2018 | BS224 | 3557 | 3432735 |
| BS6_7371_feb2018 | BS225 | 6197 | 13941470 |
| BS6_7371_feb2018 | BS226 | 1825 | 4490712 |
| BS6_7371_feb2018 | BS227 | 1642 | 4101276 |
| BS6_7371_feb2018 | BS228 | 1367 | 3214675 |
| BS6_7371_feb2018 | BS229 | 1170 | 2846412 |
| BS6_7371_feb2018 | BS368 | 1439 | 4539171 |
| BS6_7371_feb2018 | BS369 | 1288 | 4049437 |
| BS6_7371_feb2018 | BS370 | 1264 | 3433528 |
| BS6_7371_feb2018 | BS371 | 0 | 299 |
| BS6_7371_feb2018 | BS372 | 1336 | 5359584 |
| BS8_14778_feb2018 | BS326 | 29873810 | 1876553 |
| BS8_14778_feb2018 | BS327 | 25982389 | 1530156 |
| BS8_14778_feb2018 | BS328 | 19310680 | 4351691 |
| BS8_14778_feb2018 | BS329 | 34126201 | 1921533 |
| BS8_14778_feb2018 | BS332 | 20477067 | 1197286 |
| BS8_14778_feb2018 | BS333 | 40728133 | 2296849 |
| BS8_14778_feb2018 | BS334 | 15078299 | 854108 |
| BS8_14778_feb2018 | BS335 | 23743673 | 1192392 |
| BS8_14778_feb2018 | BS336 | 8169428 | 419948 |
| BS8_14778_feb2018 | BS337 | 12255895 | 955334 |
| BS8_14778_feb2018 | BS338 | 19387789 | 1123263 |
| BS9_18674_feb2018 | BS339 | 9797 | 15253388 |
| BS9_18674_feb2018 | BS340 | 16352479 | 891590 |
| BS9_18674_feb2018 | BS341 | 9501415 | 546221 |
| BS9_18674_feb2018 | BS342 | 13430934 | 813487 |
| BS9_18674_feb2018 | BS343 | 8612809 | 489015 |
| BS9_18674_feb2018 | BS344 | 16437909 | 934784 |
| BS9_18674_feb2018 | BS345 | 8086020 | 500459 |
| BS9_18674_feb2018 | BS346 | 9816468 | 618775 |
| BS9_18674_feb2018 | BS347 | 6970742 | 750223 |
| BS9_18674_feb2018 | BS348 | 60525 | 4182818 |
| BS9_18674_feb2018 | BS349 | 3806424 | 270977 |
| BS9_18674_feb2018 | BS350 | 8223 | 7867578 |
| BS9_18674_feb2018 | BS351 | 8187727 | 459640 |
| BS9_18674_feb2018 | BS352 | 23399 | 15922881 |
| BS9_18674_feb2018 | BS353 | 6505418 | 370154 |
| BS9_18674_feb2018 | BS354 | 21268 | 9288053 |
| BS9_18674_feb2018 | BS355 | 6301091 | 365261 |
| BS9_18674_feb2018 | BS356 | 8891 | 5510482 |
| BS9_18674_feb2018 | BS357 | 4596235 | 253941 |
| BS9_18674_feb2018 | BS358 | 6736 | 4671403 |
| BS9_18674_feb2018 | BS359 | 5635547 | 363351 |
| BS9_18674_feb2018 | BS360 | 14721 | 7588753 |
| BS9_18674_feb2018 | BS361 | 8861077 | 506612 |
| BS9_18674_feb2018 | BS362 | 14449 | 10367561 |
| BS9_18674_feb2018 | BS363 | 5200293 | 300038 |
| BS9_18674_feb2018 | BS364 | 4140 | 3611423 |
| BS9_18674_feb2018 | BS365 | 1663042 | 94087 |
| BS9_18674_feb2018 | BS366 | 10707 | 4264054 |
| BS9_18674_feb2018 | BS367 | 4113614 | 241053 |
kable(tally)
| no_samples | pass_essential | pass_nonessential | pass_both | |
|---|---|---|---|---|
| BS5_7201_feb2018 | 36 | 13 | 27 | 13 |
| BS6_7371_feb2018 | 25 | 0 | 24 | 0 |
| BS8_14778_feb2018 | 11 | 11 | 8 | 8 |
| BS9_18674_feb2018 | 29 | 18 | 11 | 0 |