library(dplyr)

mycolors = c("darkorange" ,"dodgerblue","limegreen","navy",
             "mediumpurple","royalblue3", "darkolivegreen4",
             "firebrick" ,"hotpink", "plum4","blue" , "magenta2")

mycols = c("#FF8C007F", "#1E90FF7F", "#32CD327F" ,"#0000807F" ,"#FF69B47F", "#8B668B7F", "#0000FF7F" ,
           "#EE00EE7F", "#9370DB7F","#B222227F", "#6E8B3D7F" ,"#3A5FCD7F")

op = par(no.readonly = T)
# par0 = par(no.readonly = T)
# par0$mfrow = c(1,2)
# par0$pch=19

ptrack = read.delim('feb8_4_pmaster_BS5_BS6_BS8_BS9_olti_halo_chlorox.txt',stringsAsFactors = F,header=T)

source('~/RProjects/dec16_2017_barseq/feb9_scratchpad.R')

geneDir =  "/home/common/barseq_gg_pdata_exp_info/summary_barseq"

#source('~/RProjects/dec16_2017_barseq/jan29_working2_source_functions_barseq.R', echo=TRUE)

countDir = '/home/common/barseq_output'
#expDir = '/home/common/barseq_gg_pdata_exp_info'
countFiles = list.files(countDir)       # filenames count matrices

countFiles = countFiles[grep('rds',countFiles)]

cfiles = paste(countDir,countFiles, sep = "/")

ptrack = ptrack %>% arrange
ptrk = distinct(ptrack,file,short)


pfile= ptrk$file
pshort = ptrk$short

wcount = match(pfile,cfiles)

cfiles = cfiles[wcount]

pfile == cfiles
## [1] TRUE TRUE TRUE TRUE

load all count matrices from common/barseq_output directory

tmp = NULL
for (i in 1:length(cfiles)) {

  tmp[[i]] = mybarseqrows(readRDS(cfiles[i]))
  names(tmp)[i] = cfiles[i]
  
}

names(tmp) = pshort

ncoln = sapply(tmp,ncol)
nrow = sapply(tmp,nrow)

coln = sapply(tmp,colnames)

coln = lapply(coln,function(x) x = gsub('BS-0','BS',x))
for (i in 1:length(tmp)) colnames(tmp[[i]]) = coln[[i]]

print(coln)
## $BS5_7201_feb2018
##  [1] "BS138" "BS139" "BS140" "BS141" "BS142" "BS143" "BS144" "BS145"
##  [9] "BS146" "BS147" "BS148" "BS149" "BS150" "BS151" "BS152" "BS153"
## [17] "BS154" "BS155" "BS156" "BS157" "BS158" "BS159" "BS160" "BS161"
## [25] "BS162" "BS163" "BS164" "BS165" "BS166" "BS167" "BS168" "BS169"
## [33] "BS170" "BS171" "BS172" "BS173"
## 
## $BS6_7371_feb2018
##  [1] "BS210" "BS211" "BS212" "BS213" "BS214" "BS215" "BS216" "BS217"
##  [9] "BS218" "BS219" "BS220" "BS221" "BS222" "BS223" "BS224" "BS225"
## [17] "BS226" "BS227" "BS228" "BS229" "BS368" "BS369" "BS370" "BS371"
## [25] "BS372"
## 
## $BS8_14778_feb2018
##  [1] "BS326" "BS327" "BS328" "BS329" "BS332" "BS333" "BS334" "BS335"
##  [9] "BS336" "BS337" "BS338"
## 
## $BS9_18674_feb2018
##  [1] "BS339" "BS340" "BS341" "BS342" "BS343" "BS344" "BS345" "BS346"
##  [9] "BS347" "BS348" "BS349" "BS350" "BS351" "BS352" "BS353" "BS354"
## [17] "BS355" "BS356" "BS357" "BS358" "BS359" "BS360" "BS361" "BS362"
## [25] "BS363" "BS364" "BS365" "BS366" "BS367"

quick check for duplicated samples

coln = sapply(tmp,colnames)

clen = as.vector(sapply(coln,length))
names(clen)=names(coln)

ucoln = unlist(coln,use.names = F)
names(ucoln)= rep(names(clen),times = clen)

coless = sapply(tmp,function(x) x = colSums(x[ess$strain,]))
colnon = sapply(tmp,function(x) x = colSums(x[noness$strain,]))

coless = unlist(coless,use.names = F)
colnon = unlist(colnon,use.names = F)

names(coless) = names(ucoln)

names(colnon) = names(ucoln)

print(table(duplicated(colnon)))
## 
## FALSE 
##   101
print(table(duplicated(coless)))
## 
## FALSE 
##   101

QC total reads essential vs nonessential

working cutoff = 1 million counts for essential; 1 million counts for nonessential

replot after removing samples that faiiled QC

eraw = lapply(tmp,function(x) x = mystats(x[ess$strain,]))

nraw = lapply(tmp,function(x) x = mystats(x[noness$strain,]))

names(xess)=names(tmp)
names(xnon)=names(tmp)


ecoln = sapply(xess,ncol)
ncoln = sapply(xnon,ncol)

wecoln = which(ecoln <= 2 )

wncoln = which(ncoln <= 2 )

if (length(wecoln)>0) xess = xess[-wecoln]

if(sum(ecoln)== 0) {
  xess = NA
  print('no essential samples pass QC')
}

if (length(wncoln)>0) xnon = xnon[-wncoln]

if(sum(ncoln)== 0) {
  xnon = NA
  print('no nonessential samples pass QC')
}

ecoln = sapply(xess,ncol)
ncoln = sapply(xnon,ncol)

cat("pass_essQC:")
## pass_essQC:
ecoln
##  BS5_7201_feb2018 BS8_14778_feb2018 BS9_18674_feb2018 
##                10                11                18
cat("pass_nonQC:")
## pass_nonQC:
ncoln
##  BS5_7201_feb2018  BS6_7371_feb2018 BS8_14778_feb2018 BS9_18674_feb2018 
##                27                24                 8                11
xess = lapply(xess,mysumtags)
## [1] 2264   10
## [1] 1108   10
## [1] 2264   11
## [1] 1108   11
## [1] 2264   18
## [1] 1108   18
xnon = lapply(xnon,mysumtags)
## [1] 10216    27
## [1] 4999   27
## [1] 10216    24
## [1] 4999   24
## [1] 10216     8
## [1] 4999    8
## [1] 10216    11
## [1] 4999   11
estats = lapply(xess,mystats)
nstats = lapply(xnon,mystats)

replot counts after removing samples that failed QC; replot

1. table: summary statistics per sample

2. percent of null counts for samples that passed QC

ESSENTIAL

for (i in 1:elen) {
  print(kable(mystats(xess[[i]]),
              caption = paste0("table",i," stats summed essential tags ",enam[i])))
  
  mybarplotnull(xess[[i]],group = factor(lecolx[[i]]),col = mycols[i],
          
          nam=paste("essential",enam[i]))
}
## 
## 
## Table: table1 stats summed essential tags BS5_7201_feb2018
## 
##          min        Q1   median   mean        Q3     max    libsum   perc05   perc10   perc90   perc95   zeros   percZeros
## ------  ----  --------  -------  -----  --------  ------  --------  -------  -------  -------  -------  ------  ----------
## BS149      0    467.00    882.5    991   1366.25    6564   1097778       22     4030       48     3872      19           2
## BS153      0   1022.75   1995.5   2296   3162.00   14256   2543879      143     4901      301     4694      22           2
## BS155      0    945.00   1766.0   2075   2883.50   11171   2299270     1910       23     4609       38      19           2
## BS157      0    560.00   1030.5   1149   1598.25    5380   1273053     2329      164     5606      234      24           2
## BS159      0    843.50   1504.0   1644   2296.25    7732   1821533       50     2235       21     2904      17           2
## BS161      0   1132.75   2071.5   2348   3258.50   15953   2601648      308     2657      158     3556      18           2
## BS167      0    458.75    854.0    965   1346.00    4894   1069280     4375       37     1811       50      24           2
## BS169      0   1029.50   1889.5   2066   2880.75    9532   2289655     5284      237     2258      344      24           2
## BS171      0    753.50   1449.0   1566   2194.50    6979   1735618       50     3088       59     4108      23           2
## BS173      0   1028.50   1987.5   2163   3013.25   14361   2397102      296     3721      342     5088      20           2

## 
## 
## Table: table2 stats summed essential tags BS8_14778_feb2018
## 
##          min         Q1    median    mean         Q3      max     libsum   perc05   perc10   perc90   perc95   zeros   percZeros
## ------  ----  ---------  --------  ------  ---------  -------  ---------  -------  -------  -------  -------  ------  ----------
## BS326      0   13104.00   24648.5   26962   38641.75   122538   29873810      226    39292    65173      723      37           3
## BS327      0   12102.75   21987.0   23450   33018.00   122119   25982389     2893      725    75955    13904      24           2
## BS328      0    7887.50   15865.0   17428   25096.00    97947   19310680    52498     3646      384    16377      42           4
## BS329      0   14675.00   31626.0   30800   43327.50   135358   34126201    58860    54899     2439      182      20           2
## BS332      0    9653.00   17741.5   18481   25954.00    91697   20477067      430    61301    23907     1042      19           2
## BS333      0   20406.75   36650.5   36758   51233.75   173910   40728133     2942      450    28175    20499      15           1
## BS334      0    7658.25   12971.0   13609   19330.75    43838   15078299    43297     2866      333    23709      15           1
## BS335      0    9437.50   19764.5   21429   32104.75    96180   23743673    51171    33701     2899      303      15           1
## BS336      0    3696.50    6879.0    7373   10503.25    34232    8169428       67    38443    40261     1749      21           2
## BS337      0    5117.25   10845.5   11061   15761.50    49807   12255895     1852      911    46399    32760      25           2
## BS338      0    6451.25   17531.0   17498   25685.75    66186   19387789    33856     5954      115    36991      27           2

## 
## 
## Table: table3 stats summed essential tags BS9_18674_feb2018
## 
##          min        Q1    median    mean         Q3     max     libsum   perc05   perc10   perc90   perc95   zeros   percZeros
## ------  ----  --------  --------  ------  ---------  ------  ---------  -------  -------  -------  -------  ------  ----------
## BS340      0   8093.25   14357.5   14759   20841.50   68092   16352479      404    27063      200     9601      12           1
## BS341      0   4525.50    8340.5    8575   11824.25   36493    9501415     2309    30417      919    10924      16           1
## BS342      0   6400.25   11874.0   12122   17127.00   44082   13430934    26428      230    13835      134      15           1
## BS343      0   4330.00    7543.5    7773   10864.75   28986    8612809    29874     1189    15958      716      15           1
## BS344      0   7954.25   14275.5   14836   21249.50   72612   16437909      312    13372      129    15032      16           1
## BS345      0   3740.75    6891.0    7298   10450.75   30678    8086020     1448    15208      591    17832      19           2
## BS346      0   5077.00    8651.5    8860   12309.25   34184    9816468    15526      425    11052      168      12           1
## BS347      0   3414.00    6063.5    6291    8853.50   24600    6970742    18491     1447    13065      708      15           1
## BS349      0   1725.75    3248.5    3435    4898.50   18064    3806424      472    15479       95     8517      20           2
## BS351      0   3612.75    7090.5    7390   10714.75   30514    8187727     2068    18307      427     9624      19           2
## BS353      0   2822.50    5494.0    5871    8409.50   32292    6505418    21762      228    10833       20      21           2
## BS355      0   2609.25    5369.5    5687    8271.25   30911    6301091    24872     1019    12730      112      18           2
## BS357      0   2004.50    3887.5    4148    6038.50   17819    4596235      273    11413       84     2900      18           2
## BS359      0   2564.50    4804.0    5086    7282.25   25263    5635547     1061    12844      441     3291      18           2
## BS361      0   3615.50    7542.5    7997   11590.00   36589    8861077    13952       77     7858       59      18           2
## BS363      0   2548.00    4577.5    4693    6675.75   18774    5200293    16017      394     9041      338      17           2
## BS365      0    527.50    1476.5    1501    2256.00    9738    1663042      458     6438      105     7195      29           3
## BS367      0   1687.75    3522.5    3713    5376.25   17011    4113614     2297     7300      519     8164      23           2

NONESSENTIAL

for (i in 1:nlen) {
  print(kable(mystats(xnon[[i]]),
              caption = paste0("table",i," stats summed nonessential tags ",nnam[i])))
  
  mybarplotnull(xnon[[i]],group = factor(lncolx[[i]]),col = mycols[i],
          
          nam=paste("nonessential",nnam[i]))
}
## 
## 
## Table: table1 stats summed nonessential tags BS5_7201_feb2018
## 
##          min       Q1   median   mean       Q3     max     libsum   perc05   perc10   perc90   perc95   zeros   percZeros
## ------  ----  -------  -------  -----  -------  ------  ---------  -------  -------  -------  -------  ------  ----------
## BS146      0   1319.5     3258   3627   5048.5   33729   18132687        0     5897     4625      204     291           6
## BS148      0    638.5     1641   1843   2580.0   17823    9215364       66        0     5702     1893     348           7
## BS149      0    549.5      982   1055   1453.0    5693    5274417     7287       21        1     2238     238           5
## BS150      0    133.0      407    488    703.0    5846    2437121     9078     2195      350        0     437           9
## BS151      0    254.0      447    477    656.5    2560    2384497        0     2728     4663       37     248           5
## BS152      0    580.5     1730   2058   2999.5   21111   10286336       29        2     5563     5035     337           7
## BS153      0   1240.5     2215   2499   3452.0   12958   12493639     3781      313        0     6309     233           5
## BS154      0    402.5      971   1079   1498.0   10200    5394318     4756     4144       14        4     296           6
## BS155      0   1200.0     2015   2216   3036.5   13466   11076807        1     4944     4279      411     234           5
## BS156      0    155.0      386    431    593.0    4005    2152546      167        0     5365     3927     404           8
## BS157      0    656.5     1115   1205   1652.0    7750    6024380     1954        6        1     4546     228           5
## BS158      0    458.0     1122   1260   1755.0   12291    6296869     2310      882      105        0     364           7
## BS159      0    988.0     1641   1776   2423.0    9094    8878159        0     1102      948       24     235           5
## BS160      0    832.5     2069   2275   3159.5   22685   11374095        3        2     1105     2700     320           6
## BS161      0   1318.5     2332   2515   3465.0   14130   12572260     1054      160        0     3319     237           5
## BS162      0    622.5     1812   2045   2924.0   22823   10222686     1307     2231       18        4     350           7
## BS163      0    274.0      488    517    705.0    2786    2584662        1     2628     6652      324     249           5
## BS164      0    972.5     2778   3217   4648.0   30751   16080019       78        0     8348     3088     313           6
## BS165      0    264.0      459    512    698.5    2721    2561219      891       20        0     3642     260           5
## BS166      0    693.5     1708   1857   2568.5   16311    9285242     1058     2570       90        0     383           8
## BS167      0    547.0      952   1027   1416.0    6327    5133731        0     3176      969       38     247           5
## BS168      0    914.5     2271   2487   3449.0   22556   12432919       11        3     1173     4903     354           7
## BS169      0   1158.5     2031   2151   2969.0   12971   10751019     4355      305        0     6064     225           5
## BS170      0    484.0     1236   1335   1846.0   12271    6671412     5404     3250       34        1     375           8
## BS171      0    900.0     1576   1681   2310.5    8620    8400995        3     3850     3735      443     237           5
## BS172      0    881.0     2221   2425   3365.5   23950   12122672      331        0     4610     4236     351           7
## BS173      0   1222.0     2156   2304   3146.5   13969   11519462     4806       39        1     5056     244           5

## 
## 
## Table: table2 stats summed nonessential tags BS6_7371_feb2018
## 
##          min       Q1   median   mean       Q3     max     libsum   perc05   perc10   perc90   perc95   zeros   percZeros
## ------  ----  -------  -------  -----  -------  ------  ---------  -------  -------  -------  -------  ------  ----------
## BS210      0    275.5      675    751   1043.0    6572    3753164        0        0        0        0     403           8
## BS211      0    272.0      639    703    966.5    7566    3514720       13       16       11       15     392           8
## BS212      0    224.0      537    589    816.0    5206    2946048     1520     1760     1286     1265     386           8
## BS213      0    296.0      704    775   1079.0    7521    3874784     1903     2262     1622     1601     380           8
## BS214      0    273.5      666    740   1029.5    6675    3699775        0        0        0        0     390           8
## BS215      0    263.0      620    689    948.0    6431    3442747       14       14       13       14     393           8
## BS216      0    332.5      803    889   1229.0    9029    4442461     1416     1874     1385     1141     387           8
## BS217      0    332.0      821    920   1277.5    8503    4600633     1758     2344     1762     1442     361           7
## BS218      0    318.0      757    843   1173.5    7893    4215738        0        0        0        0     394           8
## BS219      0    327.0      790    877   1214.0    8840    4382993       12       17       26       10     365           7
## BS220      0    262.0      672    742   1032.5    7068    3709990     1170     1699     1346     1858     404           8
## BS221      0    278.0      674    746   1027.0    7182    3727229     1470     2138     1698     2390     359           7
## BS222      0    224.0      569    637    900.0    5934    3183432        0        0        0        0     398           8
## BS223      0    259.0      631    694    969.0    7331    3467507       13       15       87       14     398           8
## BS224      0    303.0      626    687    937.0    6122    3432735     1548     1761     5464     1641     311           6
## BS225      0   1123.0     2534   2789   3836.5   26082   13941470     1905     2194     6950     2083     321           6
## BS226      0    372.5      820    898   1238.5    7778    4490712        0        0        0        0     354           7
## BS227      0    326.0      747    820   1128.5    7456    4101276       14       11       25       13     372           7
## BS228      0    252.0      587    643    891.0    5678    3214675     1488     1521     1776     1378     360           7
## BS229      0    227.0      514    569    781.0    4691    2846412     1883     1876     2241     1741     390           8
## BS368      0    300.5      799    908   1279.0    8910    4539171        0        0        0        0     398           8
## BS369      0    296.0      722    810   1125.5    7755    4049437       15       15       22       22     395           8
## BS370      0    261.5      619    687    959.0    6639    3433528     1372     1491     1644     2180     393           8
## BS372      0    398.5      953   1072   1467.0   10027    5359584     1728     1865     2033     2772     389           8

## 
## 
## Table: table3 stats summed nonessential tags BS8_14778_feb2018
## 
##          min   Q1   median   mean    Q3      max    libsum   perc05   perc10   perc90   perc95   zeros   percZeros
## ------  ----  ---  -------  -----  ----  -------  --------  -------  -------  -------  -------  ------  ----------
## BS326      0    0        0    375     0   110116   1876553        0        0        0        0    4481          90
## BS327      0    0        0    306     0    91485   1530156        0        0        0        0    4551          91
## BS328      0    0        0    871   927    67457   4351691        1     2713        2        1    3234          65
## BS329      0    0        0    384     0   149018   1921533        1     3872      304       21    3911          78
## BS332      0    0        0    240     0    83251   1197286        0        0        0        0    3987          80
## BS333      0    0        0    459     1   156694   2296849        0        0        0        0    3748          75
## BS335      0    0        0    239     0    83062   1192392        0      197      190        9    4247          85
## BS338      0    0        0    225     0    60379   1123263        1      320      338      261    4234          85

## 
## 
## Table: table4 stats summed nonessential tags BS9_18674_feb2018
## 
##          min       Q1   median   mean       Q3     max     libsum   perc05   perc10   perc90   perc95   zeros   percZeros
## ------  ----  -------  -------  -----  -------  ------  ---------  -------  -------  -------  -------  ------  ----------
## BS339      0   1162.5     2774   3051   4242.0   27978   15253388        0     4039     2302       25     371           7
## BS348      0    304.5      735    837   1178.5    8196    4182818       56        0     2906     4394     440           9
## BS350      0    475.0     1408   1574   2233.5   15160    7867578     6116       40        0     5468     385           8
## BS352      0    910.0     2729   3185   4584.5   29925   15922881     7698     6648       14        0     368           7
## BS354      0    603.5     1616   1858   2627.0   20757    9288053        0     8292     1963        8     385           8
## BS356      0    357.0      953   1102   1564.0   13467    5510482       16        0     2414     1565     380           8
## BS358      0    313.5      819    934   1328.0   10587    4671403     1693       30        0     1947     409           8
## BS360      0    495.5     1311   1518   2130.5   19018    7588753     2116     3838       23        0     382           8
## BS362      0    629.0     1771   2074   2969.0   23996   10367561        0     4775     3176       13     379           8
## BS364      0    202.0      595    722   1034.0    7502    3611423       20        0     3953     1778     397           8
## BS366      0    269.0      732    853   1196.5   10805    4264054     3246       16        0     2239     393           8

density plots before and after normalization

mynormdensity(do.call(cbind,xess),group = ecolx,filename = "Figs/ess_norm_dens.png")
## png 
##   2
mynormdensity(do.call(cbind,xnon),group = ncolx,filename = "Figs/non_norm_dens.png")
## png 
##   2
Figure 1a: Density distribution of essential raw and normalized counts.

Figure 1a: Density distribution of essential raw and normalized counts.

Figure 1b: Density distribution of nonessential raw and normalized counts.

Figure 1b: Density distribution of nonessential raw and normalized counts.

Visualization of first principal components of the PCA. The first principal component (PC1) is expected to separate samples by biological or technical variability is the main source of variance in the data. Here we see grouping by barseq run, though the sample have not been rigorously normalized together nor has any low count threshold been applied

myPCAPlot(do.call(cbind,xess),group = ecolx,filename = "Figs/ess_PCA.png")
## png 
##   2
myPCAPlot(do.call(cbind,xnon),group = ncolx,filename = "Figs/non_PCA.png")
## png 
##   2
Figure 2a: PCA essential with percentages of variance associated with each axis.

Figure 2a: PCA essential with percentages of variance associated with each axis.

Figure 2b: PCA nonessential

Figure 2b: PCA nonessential

plot percentage of null counts essential vs nonessential

summarize and write data to file

eraw = lapply(tmp,function(x) x = mystats(x[ess$strain,]))
nraw = lapply(tmp,function(x) x = mystats(x[noness$strain,]))

eraw = do.call(rbind,eraw,quote  = F)
nraw= do.call(rbind,nraw,quote  = F)


rownames(eraw ) = paste0('ess:',rownames(eraw ))
rownames(nraw ) = paste0('noness:',rownames(nraw ))

eraw$pool = 'essential'
nraw$pool = 'nonessential'

stats = rbind(eraw,nraw)

xdf = data.frame(file = names(ucoln),colnam = ucoln,essCPM = coless,nonCPM = colnon,stringsAsFactors = F)

tally = t(sapply(tmp,tally_CPM))
write.table(xdf,"feb9_masterfile_descrepancy.txt",sep = '\t')
write.table(stats,"feb9_stats_master_count_matrices.txt",sep = '\t')
kable(xdf,caption = 'summary of total counts')
summary of total counts
file colnam essCPM nonCPM
BS5_7201_feb2018 BS138 140 482298
BS5_7201_feb2018 BS139 82851 401653
BS5_7201_feb2018 BS140 200 599059
BS5_7201_feb2018 BS141 26886 130819
BS5_7201_feb2018 BS142 66 182546
BS5_7201_feb2018 BS143 11919 56071
BS5_7201_feb2018 BS144 80 268677
BS5_7201_feb2018 BS145 68693 320940
BS5_7201_feb2018 BS146 5613 18132687
BS5_7201_feb2018 BS147 432 3065
BS5_7201_feb2018 BS148 3008 9215364
BS5_7201_feb2018 BS149 1097778 5274417
BS5_7201_feb2018 BS150 551 2437121
BS5_7201_feb2018 BS151 493562 2384497
BS5_7201_feb2018 BS152 2692 10286336
BS5_7201_feb2018 BS153 2543879 12493639
BS5_7201_feb2018 BS154 2316 5394318
BS5_7201_feb2018 BS155 2299270 11076807
BS5_7201_feb2018 BS156 724 2152546
BS5_7201_feb2018 BS157 1273053 6024380
BS5_7201_feb2018 BS158 1741 6296869
BS5_7201_feb2018 BS159 1821533 8878159
BS5_7201_feb2018 BS160 3634 11374095
BS5_7201_feb2018 BS161 2601648 12572260
BS5_7201_feb2018 BS162 2984 10222686
BS5_7201_feb2018 BS163 533741 2584662
BS5_7201_feb2018 BS164 5009 16080019
BS5_7201_feb2018 BS165 523348 2561219
BS5_7201_feb2018 BS166 2881 9285242
BS5_7201_feb2018 BS167 1069280 5133731
BS5_7201_feb2018 BS168 4475 12432919
BS5_7201_feb2018 BS169 2289655 10751019
BS5_7201_feb2018 BS170 1997 6671412
BS5_7201_feb2018 BS171 1735618 8400995
BS5_7201_feb2018 BS172 3953 12122672
BS5_7201_feb2018 BS173 2397102 11519462
BS6_7371_feb2018 BS210 1192 3753164
BS6_7371_feb2018 BS211 1097 3514720
BS6_7371_feb2018 BS212 1061 2946048
BS6_7371_feb2018 BS213 1441 3874784
BS6_7371_feb2018 BS214 1372 3699775
BS6_7371_feb2018 BS215 1529 3442747
BS6_7371_feb2018 BS216 1617 4442461
BS6_7371_feb2018 BS217 1684 4600633
BS6_7371_feb2018 BS218 1296 4215738
BS6_7371_feb2018 BS219 1489 4382993
BS6_7371_feb2018 BS220 1122 3709990
BS6_7371_feb2018 BS221 3216 3727229
BS6_7371_feb2018 BS222 909 3183432
BS6_7371_feb2018 BS223 1313 3467507
BS6_7371_feb2018 BS224 3557 3432735
BS6_7371_feb2018 BS225 6197 13941470
BS6_7371_feb2018 BS226 1825 4490712
BS6_7371_feb2018 BS227 1642 4101276
BS6_7371_feb2018 BS228 1367 3214675
BS6_7371_feb2018 BS229 1170 2846412
BS6_7371_feb2018 BS368 1439 4539171
BS6_7371_feb2018 BS369 1288 4049437
BS6_7371_feb2018 BS370 1264 3433528
BS6_7371_feb2018 BS371 0 299
BS6_7371_feb2018 BS372 1336 5359584
BS8_14778_feb2018 BS326 29873810 1876553
BS8_14778_feb2018 BS327 25982389 1530156
BS8_14778_feb2018 BS328 19310680 4351691
BS8_14778_feb2018 BS329 34126201 1921533
BS8_14778_feb2018 BS332 20477067 1197286
BS8_14778_feb2018 BS333 40728133 2296849
BS8_14778_feb2018 BS334 15078299 854108
BS8_14778_feb2018 BS335 23743673 1192392
BS8_14778_feb2018 BS336 8169428 419948
BS8_14778_feb2018 BS337 12255895 955334
BS8_14778_feb2018 BS338 19387789 1123263
BS9_18674_feb2018 BS339 9797 15253388
BS9_18674_feb2018 BS340 16352479 891590
BS9_18674_feb2018 BS341 9501415 546221
BS9_18674_feb2018 BS342 13430934 813487
BS9_18674_feb2018 BS343 8612809 489015
BS9_18674_feb2018 BS344 16437909 934784
BS9_18674_feb2018 BS345 8086020 500459
BS9_18674_feb2018 BS346 9816468 618775
BS9_18674_feb2018 BS347 6970742 750223
BS9_18674_feb2018 BS348 60525 4182818
BS9_18674_feb2018 BS349 3806424 270977
BS9_18674_feb2018 BS350 8223 7867578
BS9_18674_feb2018 BS351 8187727 459640
BS9_18674_feb2018 BS352 23399 15922881
BS9_18674_feb2018 BS353 6505418 370154
BS9_18674_feb2018 BS354 21268 9288053
BS9_18674_feb2018 BS355 6301091 365261
BS9_18674_feb2018 BS356 8891 5510482
BS9_18674_feb2018 BS357 4596235 253941
BS9_18674_feb2018 BS358 6736 4671403
BS9_18674_feb2018 BS359 5635547 363351
BS9_18674_feb2018 BS360 14721 7588753
BS9_18674_feb2018 BS361 8861077 506612
BS9_18674_feb2018 BS362 14449 10367561
BS9_18674_feb2018 BS363 5200293 300038
BS9_18674_feb2018 BS364 4140 3611423
BS9_18674_feb2018 BS365 1663042 94087
BS9_18674_feb2018 BS366 10707 4264054
BS9_18674_feb2018 BS367 4113614 241053

summary of counts per barseq run; should reflect pool designated in master file

annotated experiments in masterfile is currently uncertain as ~30% of the sample ids are duplicated

kable(tally)
no_samples pass_essential pass_nonessential pass_both
BS5_7201_feb2018 36 13 27 13
BS6_7371_feb2018 25 0 24 0
BS8_14778_feb2018 11 11 8 8
BS9_18674_feb2018 29 18 11 0

ovarall summary of samples passing count threshold