First mean is always human blame (i.e. uber_1), second mean is tech blame (i.e. uber_2)

setwd("~/Dropbox/Research/Bernd")
y<-read.csv ("Yegor_s1.csv", header=T, sep=",")

names(y)
##  [1] "V1"                "V2"                "V3"               
##  [4] "V4"                "V5"                "V6"               
##  [7] "V7"                "V8"                "V9"               
## [10] "V10"               "Q1"                "uber_1"           
## [13] "uber_2"            "plane_1"           "plane_2"          
## [16] "rent_1"            "rent_2"            "diagnose_1"       
## [19] "diagnose_2"        "tesla_1"           "tesla_2"          
## [22] "age"               "gender"            "LocationLatitude" 
## [25] "LocationLongitude" "LocationAccuracy"
t.test(y$uber_1, y$uber_2)
## 
##  Welch Two Sample t-test
## 
## data:  y$uber_1 and y$uber_2
## t = 6.981, df = 98, p-value = 3.518e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  28.37166 50.90834
## sample estimates:
## mean of x mean of y 
##     69.82     30.18
t.test(y$plane_1, y$plane_2)
## 
##  Welch Two Sample t-test
## 
## data:  y$plane_1 and y$plane_2
## t = -1.0038, df = 98, p-value = 0.318
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -15.956642   5.236642
## sample estimates:
## mean of x mean of y 
##     47.32     52.68
t.test(y$rent_1, y$rent_2)
## 
##  Welch Two Sample t-test
## 
## data:  y$rent_1 and y$rent_2
## t = 1.4718, df = 98, p-value = 0.1443
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.34379 22.54379
## sample estimates:
## mean of x mean of y 
##      54.8      45.2
t.test(y$diagnose_1, y$diagnose_2)
## 
##  Welch Two Sample t-test
## 
## data:  y$diagnose_1 and y$diagnose_2
## t = 0.75073, df = 98, p-value = 0.4546
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -6.442121 14.282121
## sample estimates:
## mean of x mean of y 
##     51.96     48.04
t.test(y$tesla_1, y$tesla_2)
## 
##  Welch Two Sample t-test
## 
## data:  y$tesla_1 and y$tesla_2
## t = -3.3946, df = 98, p-value = 0.0009935
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -32.19906  -8.44094
## sample estimates:
## mean of x mean of y 
##     39.84     60.16