First mean is always human blame (i.e. uber_1), second mean is tech blame (i.e. uber_2)
setwd("~/Dropbox/Research/Bernd")
y<-read.csv ("Yegor_s1.csv", header=T, sep=",")
names(y)
## [1] "V1" "V2" "V3"
## [4] "V4" "V5" "V6"
## [7] "V7" "V8" "V9"
## [10] "V10" "Q1" "uber_1"
## [13] "uber_2" "plane_1" "plane_2"
## [16] "rent_1" "rent_2" "diagnose_1"
## [19] "diagnose_2" "tesla_1" "tesla_2"
## [22] "age" "gender" "LocationLatitude"
## [25] "LocationLongitude" "LocationAccuracy"
t.test(y$uber_1, y$uber_2)
##
## Welch Two Sample t-test
##
## data: y$uber_1 and y$uber_2
## t = 6.981, df = 98, p-value = 3.518e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 28.37166 50.90834
## sample estimates:
## mean of x mean of y
## 69.82 30.18
t.test(y$plane_1, y$plane_2)
##
## Welch Two Sample t-test
##
## data: y$plane_1 and y$plane_2
## t = -1.0038, df = 98, p-value = 0.318
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -15.956642 5.236642
## sample estimates:
## mean of x mean of y
## 47.32 52.68
t.test(y$rent_1, y$rent_2)
##
## Welch Two Sample t-test
##
## data: y$rent_1 and y$rent_2
## t = 1.4718, df = 98, p-value = 0.1443
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.34379 22.54379
## sample estimates:
## mean of x mean of y
## 54.8 45.2
t.test(y$diagnose_1, y$diagnose_2)
##
## Welch Two Sample t-test
##
## data: y$diagnose_1 and y$diagnose_2
## t = 0.75073, df = 98, p-value = 0.4546
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6.442121 14.282121
## sample estimates:
## mean of x mean of y
## 51.96 48.04
t.test(y$tesla_1, y$tesla_2)
##
## Welch Two Sample t-test
##
## data: y$tesla_1 and y$tesla_2
## t = -3.3946, df = 98, p-value = 0.0009935
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -32.19906 -8.44094
## sample estimates:
## mean of x mean of y
## 39.84 60.16