Week 4 Discussion

The “swiss” dataset in library(datasets) contains information about socioeconomic indicators and fertility. Provide descriptive statistics and confidence intervals for appropriate variables. Interpret. Provide your R code
library(psych)
swiss
##              Fertility Agriculture Examination Education Catholic
## Courtelary        80.2        17.0          15        12     9.96
## Delemont          83.1        45.1           6         9    84.84
## Franches-Mnt      92.5        39.7           5         5    93.40
## Moutier           85.8        36.5          12         7    33.77
## Neuveville        76.9        43.5          17        15     5.16
## Porrentruy        76.1        35.3           9         7    90.57
## Broye             83.8        70.2          16         7    92.85
## Glane             92.4        67.8          14         8    97.16
## Gruyere           82.4        53.3          12         7    97.67
## Sarine            82.9        45.2          16        13    91.38
## Veveyse           87.1        64.5          14         6    98.61
## Aigle             64.1        62.0          21        12     8.52
## Aubonne           66.9        67.5          14         7     2.27
## Avenches          68.9        60.7          19        12     4.43
## Cossonay          61.7        69.3          22         5     2.82
## Echallens         68.3        72.6          18         2    24.20
## Grandson          71.7        34.0          17         8     3.30
## Lausanne          55.7        19.4          26        28    12.11
## La Vallee         54.3        15.2          31        20     2.15
## Lavaux            65.1        73.0          19         9     2.84
## Morges            65.5        59.8          22        10     5.23
## Moudon            65.0        55.1          14         3     4.52
## Nyone             56.6        50.9          22        12    15.14
## Orbe              57.4        54.1          20         6     4.20
## Oron              72.5        71.2          12         1     2.40
## Payerne           74.2        58.1          14         8     5.23
## Paysd'enhaut      72.0        63.5           6         3     2.56
## Rolle             60.5        60.8          16        10     7.72
## Vevey             58.3        26.8          25        19    18.46
## Yverdon           65.4        49.5          15         8     6.10
## Conthey           75.5        85.9           3         2    99.71
## Entremont         69.3        84.9           7         6    99.68
## Herens            77.3        89.7           5         2   100.00
## Martigwy          70.5        78.2          12         6    98.96
## Monthey           79.4        64.9           7         3    98.22
## St Maurice        65.0        75.9           9         9    99.06
## Sierre            92.2        84.6           3         3    99.46
## Sion              79.3        63.1          13        13    96.83
## Boudry            70.4        38.4          26        12     5.62
## La Chauxdfnd      65.7         7.7          29        11    13.79
## Le Locle          72.7        16.7          22        13    11.22
## Neuchatel         64.4        17.6          35        32    16.92
## Val de Ruz        77.6        37.6          15         7     4.97
## ValdeTravers      67.6        18.7          25         7     8.65
## V. De Geneve      35.0         1.2          37        53    42.34
## Rive Droite       44.7        46.6          16        29    50.43
## Rive Gauche       42.8        27.7          22        29    58.33
##              Infant.Mortality
## Courtelary               22.2
## Delemont                 22.2
## Franches-Mnt             20.2
## Moutier                  20.3
## Neuveville               20.6
## Porrentruy               26.6
## Broye                    23.6
## Glane                    24.9
## Gruyere                  21.0
## Sarine                   24.4
## Veveyse                  24.5
## Aigle                    16.5
## Aubonne                  19.1
## Avenches                 22.7
## Cossonay                 18.7
## Echallens                21.2
## Grandson                 20.0
## Lausanne                 20.2
## La Vallee                10.8
## Lavaux                   20.0
## Morges                   18.0
## Moudon                   22.4
## Nyone                    16.7
## Orbe                     15.3
## Oron                     21.0
## Payerne                  23.8
## Paysd'enhaut             18.0
## Rolle                    16.3
## Vevey                    20.9
## Yverdon                  22.5
## Conthey                  15.1
## Entremont                19.8
## Herens                   18.3
## Martigwy                 19.4
## Monthey                  20.2
## St Maurice               17.8
## Sierre                   16.3
## Sion                     18.1
## Boudry                   20.3
## La Chauxdfnd             20.5
## Le Locle                 18.9
## Neuchatel                23.0
## Val de Ruz               20.0
## ValdeTravers             19.5
## V. De Geneve             18.0
## Rive Droite              18.2
## Rive Gauche              19.3
?swiss

When I ran “?swiss” in R, I found that it contains information about fertility in Switzerland in 1888, when fertility was beginning to fall from a high level, and displays 6 variables from data collected for 47 French-speaking provinces.

describe(swiss)
##                  vars  n  mean    sd median trimmed   mad   min   max
## Fertility           1 47 70.14 12.49  70.40   70.66 10.23 35.00  92.5
## Agriculture         2 47 50.66 22.71  54.10   51.16 23.87  1.20  89.7
## Examination         3 47 16.49  7.98  16.00   16.08  7.41  3.00  37.0
## Education           4 47 10.98  9.62   8.00    9.38  5.93  1.00  53.0
## Catholic            5 47 41.14 41.70  15.14   39.12 18.65  2.15 100.0
## Infant.Mortality    6 47 19.94  2.91  20.00   19.98  2.82 10.80  26.6
##                  range  skew kurtosis   se
## Fertility        57.50 -0.46     0.26 1.82
## Agriculture      88.50 -0.32    -0.89 3.31
## Examination      34.00  0.45    -0.14 1.16
## Education        52.00  2.27     6.14 1.40
## Catholic         97.85  0.48    -1.67 6.08
## Infant.Mortality 15.80 -0.33     0.78 0.42

Using the describe(swiss) function we can get the descriptive statistics for all of the variables in the dataset. We can see that Fertility has a mean of 70.14, with a standard deviation of 12.49.

hist(swiss$Fertility)

The histogram shows the distribution for Fertility, which gives a visual for some of the statistics above. As you can see, the mean falls right at about 70, with a slight skew to the left. You can also see the range of the histogram is 30 to 100, encompassing the min and max of 35 and 92.5.

plot(swiss[,1:6])

The scatterplots above display a correlation between all pairs of variables in the dataset, most importantly a correlation between each variable and Fertility.

We can form a confidence interval for the Fertility variable using some of the descriptive statistics. By creating a confidence interval we can form a range, in which we are a certain amount confident, that the true population mean is located.

Confidence Interval
Fertility

Xbar + Z(alpha/2)SE = Lower Xbar + Z(1-alpha/2)SE = Upper

70.14+qnorm(.05)*12.49/sqrt(47)
## [1] 67.14332
70.14+qnorm(.95)*12.49/sqrt(47)
## [1] 73.13668

CI = 67.14 - 73.14

Since this is confidence interval used an alpha of .05, we can state that, we are 90% confident that the true population mean for Fertility is located somewhere between 67.14 and 73.14.