Robert Batzinger
Dec 2 17
\[ \]
Definitions: (0.3) - Notation, Relationships Between Sets, Operations On Sets, Venn Diagrams
Functions: (0.4) - Surjections, Injections, Bijections, Inverse
Counting: (1) - Additive and Multiplicative Principles: (1.1), Binomial Coefficients: (1.2)
Index to Activities
Index to Exercises:
\[ \]
This version cannot be drawn on a single plane without the edges intersecting
\tag
\begin{..} ... \end{..}
{...}
$$d = \sqrt{a_0^2 + a_1^2}$$
\vfil \hfil \bigskip \smallskip
\tiny \small \normalsize \large \huge
\bf \tt \sl \it
\section \subsection \subsubsection
\includegraphics{width=\columnwidth}{pic.png}
\begin{tabular}{lr} aa & 3.5\\ b & 17.2\\ \end{tabular}
\footnote{This is a note}
\cite{Knuth:1970}
\label{id} .. As seen in \ref{id}
\addresslabel[\fboxsep=5mm]{\vbox to 75mm{%
\hbox to 40mm{\kern-5pt
$\vcenter{\hbox to 1.7cm{%
\includegraphics[width=1.7cm]{payap.png}\hss}}\
\vcenter{\raggedright
Payap University\\ Faculty of Sci\\
Amphur Muang\\ Chiang Mai 50000\\
Thailand\\}$\hss}%
\vfill{\centering {\Large\scshape
\textbf{Dr.~Robert~P.~Batzinger}\\}\medskip
\textit{Instructor Emeritus}\\}
\vfill{\raggedleft \small
\textit{Office: \phonei}\\%
\textit{LinkedIn: robert-batzinger}\\%
\textit{Email: \emaili}\\}}}
A set is a collection of objects, which are called elements. The order of the elements does not matter, and each element may occur no more than once. An element may be atomic or molecular.
\[ \]
Notation | \( \LaTeX \) | Explanation |
---|---|---|
\( X = \{a,b,c\} \) | X = \{a,b,c\} |
\( X \) is a set that contains \( a,b,c \) |
\( Y = \{b,c,d\} \) | Y = \{b,c,d\} |
\( Y \) is a set that contains \( b,c,d \) |
\( Z = \{X, Y\} \) | Z = \{X, Y\} |
\( Z \) is a set of Sets \( X \) and \( Y \) |
\( A \subset X \) | A \subset X |
Set \( A \) is a subset of \( X \) |
\( B \subseteq X \) | B \subseteq X |
Set \( B \) is a subset or equals to Set \( X \) |
\( a \in X \) | a \in X |
\( a \) is an element of Set \( X \) |
\( d \not\in X \) | d \not\in X |
\( d \) is not an element of Set \( X \) |
\( \LaTeX \) | Definition | Explanation |
---|---|---|
\emptyset |
\( \emptyset \) | \( \emptyset \) is a set with no elements |
\mathbb{P} |
\( \mathbb{P} = \{2,3,5,7,11,...\} \) | \( \mathbb{P} \) is a set of Prime Numbers |
\mathbb{W} |
\( \mathbb{W} = \{1,2,3,4,...\} \) | \( \mathbb{W} \) is a set of Whole Numbers |
\mathbb{N} |
\( \mathbb{N} = \{0,1,2,3,4,...\} \) | \( \mathbb{N} \) is a set of Natural Numbers |
\mathbb{Z} |
\( \mathbb{Z} = \{...,-3,-2,-1,0,1,2,3,...\} \) | \( \mathbb{Z} \) is a set of all Integers |
\mathbb{Q} |
\( \mathbb{Q} = \{x \in \mathbb{R} : x = n/m : \forall n,m \in \mathbb{Z}\} \) | \( \mathbb{Q} \) is a set of all Rational Numbers |
\mathbb{R} |
\( -\infty < \mathbb{R} < \infty \) | \( \mathbb{R} \) is a set of all Real Numbers |
\cal U |
\( \cal U \) | Set of all elements in the domain |
\( \LaTeX \) | Notation | Description |
---|---|---|
\{ ,\} |
\( \{ ,\} \) | The elements of a set. \( \{1, 2, 3\} \) is the set containing 1, 2, and 3. |
: |
\( : \) | \( \{x : x > 2\} \) is the set of all \( x \) where \( x > 2 \) |
\in |
\( \in \) | \( 2 \in \{1, 2, 3\} \) asserts that \( 2 \) is an element of the set |
\not\in |
\( \not\in \) | \( 4 \not\in \{1,2,3\} \) asserts that \( 4 \) is not an element of the set |
{\cal P}(A) |
\( {\cal P}(A) \) | \( {\cal P}(A) \) is a power set of \( A \) containing all the subsets of \( A \) |
Please note which of these is true
Given \( A=\{1,2,3\}, X = {\cal P}(A): \)
\( \qquad\exists y \in X: y \subseteq A, y = A \)
Hint (What is the value of \( y \) ?)
Given \( A = \emptyset, X = {\cal P}(A):X = A \)
Hint: (What is the value of \( X \) ?)
Given $A = \emptyset, X = \
\[ \]
Which are true, false, or meaningless?
Given \( A=\{1,2,3,4,5,6\}, \) \( B=\{2,4,6\}, \) \( C=\{1,2,3\}, \) and \( D=\{7,8,9\} \)
\[ \begin{array}{ll|ll} * & $A \subset B$ & * & $B \subset A$ \\ * & $B \in C$ & * & $A > D$ \\ * & $\emptyset \in A$ & * & $\emptyset \subset A$ \\ * & $3 \in C$ & * & $3 \subset C$ \\ * & $\{3\} \subset C$ & * & $\{3,3,2,1,1\} = C$ \\ \end{array} \]
\[ \]
Definition
Cardinality of a set equals the number of unique elements of a set.
\[ A = \{1,2,3\} \implies |A| = 3 \]
Find the cardinality of the following sets
\( \LaTeX \) | Math | Description |
---|---|---|
\subseteq |
\( \subseteq \) | \( A \subseteq B \) asserts that \( A \) is either a subset of \( B \) or \( A = B \). |
\subset |
\( \subset \) | \( A \subset B \) asserts that \( A \) is subset of \( B \): every element of \( A \) is also in \( B \) but \( A \neq B \). |
\cap |
\( \cap \) | \( A\cap B \) is the intersection of \( A \) and \( B \): elements existing in both \( A \) and \( B \). |
\cup |
\( \cup \) | \( A \cup B \) is the union of \( A \) and \( B \): all elements in either \( A \) or \( B \) or both |
\times |
\( \times \) | \( A \times B \) is a Cartesian product: the set of all pairs \( (a, b) \) with \( a \in A \) and \( b \in B \). |
\backslash |
\( \backslash \) | \( A\backslash B \) is Set \( A \) minus Set \( B \): all elements of \( A \) which are not elements of \( B \). |
\bar{A} |
\( \bar{A} \) | The complement of \( A \) is the set of everything except elements of \( A \) |
\( |A| \) | \( |A| \) | The cardinality of A is the number of elements in \( A \). |
\[ \small\begin{array}{|c|c|c|c|c|} \hline A & |A| & {\cal P}(A) & count({\cal P}(A)) & |{\cal P}(A)| \\ \hline \emptyset & 0 & \{\emptyset\} & (1) & 1 \\ \hline \{1\} & 1 & \{\{\emptyset\},\{1\}\} & (1+1) & 2 \\ \hline \{1,2\} & 2 & \{\{\emptyset\}, \{1\}, \{2\}, \{1,2\}\} & (1+2+1) & 4 \\ \hline \{1,2,3\} & 3 & \{\{\emptyset\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\} & (1+3+3+1) & 8 \\ \hline \{1,2,3,4\} & 4 & \{\{\emptyset\}, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, & (1+4+6+4+1) & 16 \\ & & \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, &&\\ & & \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}\} & & \\ \hline \{1,2,3,4,5\} & 5 & \{\{\emptyset\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, &(1+5+10+10+5+1) & 32 \\ & & \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}, \{4,5\}, \{1,2,3\}, & & \\ & &\{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{1,4,5\}, \{2,3,4\}, & & \\ & & \{2,3,5\}, \{2,4,5\}, \{3,4,5\}, \{1,2,3,4\}, \{1,3,4,5\}, & & \\ & &\{1,2,4,5\}, \{1,2,3,5\}, \{2,3,4,5\}, \{1,2,3,4,5\}\}& & \\ \hline \end{array} \]
require 'set'
setA = Set.new(1..3);
setB = Set.new([2,3])
setC = Set.new([2,3,4]);
setU = Set.new(1..4)
puts <<endmsg
A:#{setA.inspect} B:#{setB.inspect}
C:#{setC.inspect}
B subset A: #{setB.subset?(setA)}
A superset B: #{setA.superset?(setB)}
A union B: #{setA.union(setC).inspect}
A intersect C: #{setA.intersection(setC).inspect}
A intersect C: #{(setA & setC).inspect}
A intersect C?:#{setA.intersect?(setC)}
A subtract C: #{setA.difference(setC)}
Complement(B): #{setU.subtract(setB).inspect}
Cardinality(A):#{setA.size}
4 member of C?:#{setC.include?(4)
endmsg
A:#<Set: {1, 2, 3}> B:#<Set: {2, 3}>
C:#<Set: {2, 3, 4}>
B subset A: true
A superset B: true
A union B: #<Set: {1, 2, 3, 4}>
A intersect C: #<Set: {2, 3}>
A intersect C: #<Set: {2, 3}>
A intersect C?: true
A subtract C: #<Set: {1}>
Complement(B): #<Set: {1, 4}>
Cardinality(A): 3
4 member of C?: true
\[ \]
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{venndiagram}
\usepackage{xcolor}
\begin{document}\Large
\begin{venndiagram3sets}[labelOnlyA={1},
labelOnlyB={2},labelOnlyC={3},
labelOnlyAB={4},labelOnlyAC={5},
labelOnlyBC={6},labelABC={7},
labelNotABC={8},shade=orange]
\fillACapB \fillBCapC \fillACapC
\end{venndiagram3sets}
\end{document}
Use the Venn.tex to create a PDF that displays the following
Upload the diagram to the Google Classroom
Determine set expressions required to fill each of the colored areas
\[ \begin{array}{ll|ll} * & Red - $A / (B \cup C)$ & * & Yellow - $(A \cup B)/ C$ \\ * & Green & * & Cyan\\ * & Blue & * & Purple\\ * & White & * & Grey\\ \end{array} \]
Create a Venn Diagram in yEd to represent the relationships between these standard sets:
\[ \mathbb{N}, \mathbb{P}, \mathbb{Q}, \mathbb{R}, \mathbb{W}, \mathbb{Z} \]
Data comes a survey to measure data literacy
The data has been extracted into a CSV file.
Related to the webinar in current trends in improving data literacy within organizations
Sex | Age | Low Inc (%) | Mid Inc (%) | High Inc (%) | Sum |
---|---|---|---|---|---|
F | 18-24 | 36 (44.4%) | 34 (27.1%) | 11 (7.2%) | 81 |
M | 18-24 | 24 (37.5%) | 25 (24.6%) | 15 (11.9%) | 64 |
F | 25-44 | 25 (12.6%) | 113 (53.6%) | 60 (22.7%) | 198 |
M | 25-44 | 49 (20.0%) | 117 (44.2%) | 79 (25.6%) | 245 |
F | 45-64 | 58 (19.8%) | 124 (39.6%) | 111 (31.5%) | 293 |
M | 45-64 | 32 (13.3%) | 83 (32.8%) | 125 (43.7%) | 240 |
F | 65-older | 0 (0.0%) | 3 (37.5%) | 5 (11.0%) | 8 |
M | 65-older | 0 (0.0%) | 7 (50.0%) | 7 (10.9%) | 14 |
F | All ages | 119 (20.5%) | 274 (45.6%) | 187 (28.9%) | 580 |
M | All ages | 105 (18.7%) | 232 (39.9%) | 226 (36.4%) | 563 |
DATASET FACTORS: | region: location within the USA |
---|---|
gender: declared gender | education: level of education |
age: age group | education_group: type of education |
race: declared race | ithealth: Uses IT for medicine/health |
income: annual salary level | itwealth: Uses IT for finance/banking |
employment: type of work | itcivic: Uses IT as a citizen |
job_role: role at work | itwork: Uses IT at work |
Which factors are most associated with the highest female income level?
Which factors related with the lowest female income?
Which factors have the most impact on income?
Which pair of factors has the most impact?
AGE
Income level | 18-24 | 25-44 | 45-64 | 65-older |
---|---|---|---|---|
low Income | 36 | 87 | 58 | 0 |
middle Income | 34 | 113 | 124 | 3 |
high Income | 11 | 60 | 111 | 5 |
RACE
Income level | Asian | Colored | White |
---|---|---|---|
low Income | 7 | 57 | 126 |
mid Income | 6 | 60 | 257 |
high Income | 10 | 26 | 184 |
Group | Income | 18to24 | 25to44 | 45to64 | 65andMore | All |
---|---|---|---|---|---|---|
Female | High | 11 (14%) | 60 (23%) | 111 (38%) | 5 (63%) | 187 (29%) |
Other | 70 (86%) | 200 (77%) | 182 (62%) | 3 (38%) | 455 (71%) | |
All | 81 | 260 | 293 | 8 | 642 | |
Male | High | 15 (23%) | 79 (32%) | 125 (52%) | 7 (50%) | 226 (40%) |
Other | 49 (77%) | 166 (68%) | 115 (48%) | 7 (50%) | 337 (60%) | |
All | 64 | 245 | 240 | 14 | 563 | |
All | High | 26 (18%) | 139 (28%) | 236 (44%) | 12 (55%) | 413 (34%) |
Other | 119 (82%) | 366 (72%) | 297 (56%) | 10 (45%) | 792 (66%) | |
All | 145 | 505 | 533 | 22 | 1205 |
The ratio of the percentage of high income individuals between subgroups represents the magnitude of the effect. Combinations of factors identify whether the combined effects are additive or synergistic.
Factor | Transition | Ratio | Effect |
---|---|---|---|
\( Gender \) | \( F\Rightarrow M \) | 40/29 | 1.38 |
\( Age_M \) | \( M18to24\Rightarrow M45to64 \) | 52/23 | 2.26 |
\( Age_F \) | \( F18to24\Rightarrow F45to64 \) | 38/14 | 2.71 |
\( Age\cap Gender \) | \( F18to24\Rightarrow M45to64 \) | 52/14 | 3.71 |
Your task is to compare how factors or pairs of factors effect the percentage of female respondent receiving high incomes.
EDUCATION: (Highest level attained)
Income level | Primary | High School | Undergrad Studies | Undergrad Degree | Grad Studies | Grad Degree |
---|---|---|---|---|---|---|
low Income | 1 | 61 | 83 | 28 | 5 | 12 |
mid Income | 2 | 58 | 100 | 114 | 17 | 32 |
high Income | 1 | 11 | 49 | 71 | 23 | 65 |
EDUCATION_GROUP
Income level | No College | Some College | Undergrad | Graduate |
---|---|---|---|---|
low Income | 62 | 83 | 28 | 17 |
mid Income | 60 | 100 | 114 | 49 |
high Income | 12 | 49 | 28 | 88 |
INCOME:
Income level | Number |
---|---|
low Income | 190 |
mid Income | 323 |
high Income | 220 |
EMPLOYMENT
Income level | Student | Not Working | Part-time | Full-time |
---|---|---|---|---|
low Income | 20 | 70 | 35 | 65 |
mid Income | 19 | 90 | 49 | 165 |
high Income | 8 | 61 | 23 | 128 |
JOB_ROLE
Income level | Admin | Artist | Free- lance | Logis- tics | Mngmt | Profess | Sales | Skilled | Other | Unem- ployed |
---|---|---|---|---|---|---|---|---|---|---|
low Income | 11 | 2 | 3 | 2 | 8 | 9 | 39 | 7 | 40 | 69 |
mid Income | 42 | 5 | 6 | 2 | 23 | 45 | 50 | 12 | 57 | 81 |
high Income | 31 | 5 | 6 | 2 | 40 | 52 | 12 | 7 | 23 | 42 |
REGION: (location)
Income level | Northeast | Central | South | Mountain | Pacific | Other |
---|---|---|---|---|---|---|
low Income | 28 | 44 | 77 | 13 | 23 | 5 |
mid Income | 53 | 130 | 75 | 24 | 39 | 2 |
high Income | 41 | 43 | 73 | 11 | 52 | 0 |
ITWEALTH
Income level | Low Use | mid Use | High Use |
---|---|---|---|
low Income | 49 | 73 | 68 |
mid Income | 62 | 122 | 139 |
high Income | 42 | 93 | 85 |
ITHEALTH
Income level | Low Use | mid Use | High Use |
---|---|---|---|
low Income | 62 | 98 | 30 |
mid Income | 83 | 183 | 57 |
high Income | 45 | 127 | 48 |
ITCIVIC
Income level | Low Use | mid Use | High Use |
---|---|---|---|
low Income | 67 | 38 | 85 |
mid Income | 84 | 68 | 171 |
high Income | 47 | 32 | 141 |
ITWORK
Income level | Low Use | mid Use | High Use |
---|---|---|---|
low Income | 58 | 90 | 42 |
mid Income | 84 | 177 | 62 |
high Income | 59 | 114 | 42 |
\[ \]
A function is a rule that assigns each input exactly one output.
Domain is the set of all possible inputs.
Range is the set of all possible outputs.
Given the following mappings, which would qualitfy as functions?
\[ \]
Surjection where the elements of the domain cover the full range of value in the range.
\[ f : \{1, 2, 3, 4, 5, 6\} \Rightarrow \{a,b,c\} \]
\[ \begin{array}{|c|c|c|c|c|c|c|} \hline Original\ domain & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline Outcomes\ value & a & a & b & b & b & c \\ \hline \end{array} \]
Injection where the elements of the domain map to unique values in the range (No duplicates).
\[ f : \{1, 2, 3, 4, 5\} \Rightarrow \{a,b,c, d, e, f\} \]
\[ \begin{array}{|c|c|c|c|c|c|c|} \hline Original\ domain & 1 & 2 & 3 & 4 & 5 \\ \hline Outcomes\ value & e & c & b & d & a \\ \hline \end{array} \]
Bijection where the all elements of the domain map to unique values which cover the entire range.
\[ f : \{1, 2, 3, 4, 5, 6\} \Rightarrow \{a,b,c, d, e, f\} \]
\[ \begin{array}{|c|c|c|c|c|c|c|} \hline Original\ domain & 1 & 2 & 3 & 4 & 5 & 6\\ \hline Outcomes\ value & f & c & b & d & a & e\\ \hline \end{array} \]
\[ f : \{1, 2, 3, 4, 5, 6\} \Rightarrow \{a,b,c, d, e, f\} \]
\[ f : \{a,b,c, d, e, f\} \Rightarrow \{1, 2, 3, 4, 5, 6\} \]
\[ \]
In a group of 10 people, if everyone shakes hands with everyone else exactly once, how many handshakes took place?
If there are 10 people and 3 chairs, how many groups of 3 are possible?
How many ways can you distribute 10 cookies to 7 students?
The additive principle states that if event \( A \) can occur in \( m \) ways, and event \( B \) can occur in \( n \) disjoint ways, then the event \( A \cup B \) can occur in \( m + n \) ways.
For 2 sets: \( |A \cup B| = |A| + |B| - |A \cap B| \)
For 3 sets: \( \small|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| +|A \cap B \cap C| \)
For given sets \( A \) and \( B \), the set of all ordered pairs \( \{x,y\} \) where \( x \in A \) and \( y \in B \)
\[ \hbox{For}\ A = \{1,2,3\}\ \hbox{and}\ B = \{A,B,C,D\} \]
\[ A \times B= \left\{ \begin{array}{ccc} \{1,A\} & \{2,A\} & \{3,A\}\\ \{1,B\} & \{2,B\} & \{3,B\}\\ \{1,C\} & \{2,C\} & \{3,C\}\\ \{1,D\} & \{2,D\} & \{3,D\}\\ \end{array} \right\} \]
If event \( A \) can occur in \( m \) ways, and each possibility for \( A \) allows for exactly \( n \) ways for event \( B \), then the event \( A \cup B \) can occur in \( m \times n \) ways
For sets: \( |A \times B| = |A| \cdot |B| \)
# MULTIPLICATIVE
x = 0
for i in 1..10
for j in 1..10
for k in 1..10
x = x + 1
end
end
end
puts x
1000
# ADDITIVE
x = 0
for i in 1..10
x = x + 1
end
for j in 1..10
x = x + 1
end
for k in 1..10
x = x + 1
end
puts x
30
def try(n)
x = 0
for i in 1..n
for j in 1..i
for k in 1..j
x = x + 1
end
end
end
puts x
end
n | x | \( \sum_{x=1}^n\ x \) |
---|---|---|
1 | 1 | 1 |
2 | 4 | 3 |
3 | 10 | 6 |
4 | 20 | 10 |
5 | 35 | 15 |
6 | 56 | 21 |
7 | 84 | 28 |
8 | 120 | 36 |
9 | 165 | 45 |
10 | 220 | 55 |
\[ \small\begin{array}{cccc} \textbf{n} & \textbf{Sequence} &\textbf{Sum} &\textbf{Equiv}\\ \hline 1 & \small 1 & 1 & 1{(1+1)\over 2} \\ 2 & \small 1+2 & 3 & 2{(1+2)\over 2} \\ 3 & \small 1+2+3 & 6 & 3{(1+3)\over 2} \\ 4 & \small 1+2+3+4 & 10 & 4{(1+4)\over 2} \\ 5 & \small 1+2+3+4+5 & 15 & 5{(1+5)\over 2} \\ 6 & \small 1+2+3+4+5+6 & 21 & 6{(1+6)\over 2} \\ 7 & \small 1+2+3+4+5+6+7 & 28 & 7{(1+7)\over 2} \\ 8 & \small 1+2+3+4+5+6+7+8 & 36 & 8{(1+8)\over 2} \\ \hline \end{array} \]
\[ \begin{array}{rcc} count & = & \sum{\{1 .. n\}} + \sum{\{1 .. (n-1)\}} + ... + \{1\} \\ & = & {x(x+1)\over 2} + {(x-1)((x-1)+1)\over 2} + ... + 1 \\ & = & {x_n + x_n^2\over 2} + {x_{n-1} + x_{n-1}^2\over 2} + ... + {x_{1} + x_{1}^2\over 2}\\ & = & {\sum_{i=1}^{n}\ x_i + \sum_{i=1}^{n}\ x_i^2\over 2} \\ \end{array} \]
x = 0
for i in 1..10
for j in 1..10
x = x + 1
end
for k in 1..10
x = x + 1
end
end
puts x
x = 0
for i in 1..10
for j in 1..10
for k in 1..10
x = x + 1
end
end
x = x + 1
end
puts x
If \( N \) objects are placed in \( K \) boxes, then there is at least one box containing at least \( \lceil N/K \rceil \) objects.
Example:
Among 100 people, there are at least \( \lceil 100 / 12 \rceil = 9 \) who were born in the same month.
A drawer contains a dozen brown socks and a dozen black sock, all unmatched. A man takes socks out at random in the dark.
If there are five possible grades (i.e., A, B, C, D, F), what is the minimum number of students needed to Ensure that at least six students get the same grade.
Given a restaurant offers 8 appetizers and 14 entrées.
How many choices do you have if:
A palindrome is a string that is identical to the string in reverse order. How many bit strings of length \( n \) are palindromes?
How many licence plates can be made using either two letters followed by 4 digits or four letters followed by 2 digit is?
How many books can be identified using the 12 digit ISBN?
\[ |{\cal P}(A)| = 2^5 = 32 \]
\[ \left({|A|\over n!\ (|A| - n)!}\right) \]
\[ \small\begin{array}{|c|c|c|c|c|} \hline n=0 & n=1 & n=2 & n=3 & n=4 & n=5 \\ \hline \left({5\atop 0}\right) & \left({5\atop 1}\right) & \left({5\atop 2}\right) & \left({5\atop 3}\right) & \left({5\atop 4}\right) & \left({5\atop 5}\right) \\ \hline \left({5!\over 0!\ 5!}\right) & \left({5!\over 1!\ 4!}\right) & \left({5!\over 2!\ 3!}\right) & \left({5!\over 3!\ 2!}\right) & \left({5!\over 4!\ 1!}\right) & \left({5!\over 5!\ 0!}\right) \\ \hline {5\cdot4\cdot3\cdot2\cdot1\over (5\cdot4\cdot3\cdot2\cdot1)} & {5\cdot4\cdot3\cdot2\cdot1\over (1)(4\cdot3\cdot2\cdot1)} & {5\cdot4\cdot3\cdot2\cdot1\over (2\cdot1)(3\cdot2\cdot1)} & {5\cdot4\cdot3\cdot2\cdot1\over (3\cdot2\cdot1)(2\cdot1)} & {5\cdot4\cdot3\cdot2\cdot1\over (4\cdot3\cdot2\cdot1)(1)} & {5\cdot4\cdot3\cdot2\cdot1\over (5\cdot4\cdot3\cdot2\cdot1)} \\ \hline {1 \over 1} & {5 \over 1} & {5\cdot4 \over 2\cdot1} = {5\cdot2\over 1} & {5\cdot4\cdot3 \over 3\cdot2\cdot1} = {5\cdot 2\over 1} & {5 \over 1} & {1 \over 1}\\ \hline 1 & 5 & 10 & 10 & 5 & 1 \\ \hline \emptyset & \{1\}, & \{1,2\}, \{2,3\}, &\{1,2,3\}, \{2,3,4\}, & \{1,2,3,4\}, & \{1,2,3,4,5\}\\ & \{2\}, &\{3,4\}, \{4,5\},& \{3,4,5\}, \{1,2,4\}, & \{1,2,3,5\}, & \\ &\{3\}, & \{1,3\}, \{1,4\}, &\{2,3,5\}, \{1,2,5\}, & \{1,2,4,5\}, & \\ &\{4\}, &\{1,5\}, \{1,4\}, &\{1,3,4\}, \{1,3,5\},&\{1,3,4,5\},&\\ &\{5\} &\{2,5\}, \{1,5\} & \{1,4,5\}, \{2,4,5\} & \{2,3,4,5\} & \\ \hline 00000 & 10000, & 11000,01100, & 11100, 01110, & 11110, & 11111 \\ & 01000, & 00110, 00011, & 00111, 11010, & 11101, & \\ & 00100, & 10100, 10010, & 01101, 11001, & 11011, & \\ & 00010, & 10001, 10010, & 10110, 10101, & 10111, &\\ & 00001 & 01001, 10001 & 10011, 01011 & 01111 & \\ \hline \end{array} \]
\[ \small\begin{array}{|l|c|c|c|c|c|} \hline weight: & k=0 & k=1 & k=2 & k=3 & k=4 & k=5 \\ \hline B^5_k & 00000 & 10000, & 11000, 01100, & 11100, 01110, & 11110,& 11111 \\ & & 01000, & 00110, 00011, & 00111, 10110, & 11101, & \\ & & 00100, & 10100, 01010, & 01011, 10011, & 11011, & \\ & & 00010, & 00101, 10010, & 10101, 11001, & 10111, & \\ & & 00001 & 01001, 10001 & 11010, 01101 & 01111 & \\ \hline B^5_k& 1 & 5 & 10 & 10 & 5 & 1 \\ \hline \end{array} \]
Recursively break the problem down by imposing a value of the first digit of the unknown set and solving the problem for the resulting subsets:
\[ \{?????\}_{k=3} = 0\{????\}_{k=3} + 1\{????\}_{k=2} \]
Once the problem has been reduced to a simple subset, the values are back substituted.
\[ \begin{array}{rcccccl} |B^5_3| & = & |B^4_3| + |B^4_2| &=& 4 + 6 & = & 10 \\ |B^4_3| & = & |B^3_3| + |B^3_2| &=& 1 + 3 & = & 4 \\ |B^4_2| & = & |B^3_2| + |B^3_1| &=& 3 + 3 & = & 6 \\ \end{array} \]
\[ \begin{array}{c} (x + y)^1 = x + y\\ (x + y)^2 = x^2 + 2xy + y^2\\ (x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\\ (x + y)^4 = x^4 + +4x^3y + 6x^2y^2 + 4xy^3 + y^4\\ (x + y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5\\ \end{array} \]
\[ \begin{array}{c} \exists n,k: n \ge 0, 0 \le k \le n \Rightarrow\\ \left({n \atop k}\right)\\ \end{array} \]
n choose k
. \[ \left({n \atop k}\right) =\left({n-1 \atop k-1}\right) + \left({n-1 \atop k}\right) \]
Define these terms:
Index to Activities