Project Title: Final Report on Employee Attrition Analysis

NAME: Siddhant Mishra

EMAIL: mishra.siddhant18@gmail.com

COLLEGE: IIT (BHU), Varanasi

Introduction:

Employee Attrition refres to when a company employee choose to leave when company to work for other company. Employee attrition is a very common process across organizations. Vraious employee leave one company for other company just becuase of some benifits. The benefits depend on employee to employee like some may be better compansation, distance from home, better growth Opportunity, better skillset training, betterrole, environmant factors, bad relationship with managers etc.

Overview Of The Study:

The analysis has been carried to find out the most important factor that affect employee’s attrition. The opposite of attrition is retention. As employee’s attrition very negatively affect companies growth, every year companies come with different retention schemes for employee so employees dont leave the company. Those method include retention bonuses, better training, promotion and stock option which mature after som definite period. So finding the important factor for attrition will help organization to plan their retention schemes more targeted.

An Empirical Study on Dataset Created by IBM Data Scientist

Overview

In this study we will study Data created by IBM data scientist involving various factors of employee. Though the data is fictious but since the data is used by data scientist of a reputed company it can be considered for a explorartory study.

Data:

The dataset consist information of 1470 employees with their 35 Characteristics including their Attrition/Retention status

The factors that are included in this Dataset are:

  1. Age
  2. Attrition Yes/No
  3. Business Travel - NonTravel/Travel-Rarely/Travel-Frequently
  4. DailyRate - DailyRate paid to Employee
  5. Deaprtment- There are 3 department as follow Human Resources, Research & Development & Sales
  6. DistanceFromHome
  7. Education: The level of Education coded as follow: 1 ‘Below College’ 2 ‘College’ 3. ‘Bachelor’ 4 ‘Master’ 5 ‘Doctor’
  8. Education Field: Eduaction Field of employee among Human Resources, Life Sciences Marketing, Medical,Other & Technical Degree
  9. EmployeeCount- Number of Employees in record 10.EmployeeNumber- Unique Code of Employees
  10. EnvironmentSatisfaction: The Environment satisfaction rate given by employee as 1 ‘Low’ 2 ‘Medium’ 3 ‘High’ 4 ‘Very High’
  11. Gender: Male/Female
  12. HourlyRate: The Hourly Rate paid to Employee
  13. JobInvolvement: The degree to which employee his involved in job, given as 1 ‘Low’ 2’Medium’ 3 ‘High’ 4 ‘Very High’
  14. JobLevel: The Job heirarchy of Employee, rated as 1 ‘Low’ 2 ‘Medium’ 3 ‘High’ 4 ‘Very High’
  15. JobRole: The Job Role of Employee among Healthcare Representative, Human Resources Laboratory Technician, Manager, Manufacturing Director, Research Director, Research Scientist, Sales Executive & Sales Representative
  16. JobSatisfaction: The job satisfcation rate of employee given as 1 ‘Low’ 2 ‘Medium’ 3 ‘High’ 4 ‘Very High’
  17. MaritalStatus: Employee is Married/Divorced/Single
  18. MonthyIncome: The monthly income of employee in Rs
  19. MonthlyRate: The monthly rate of employee paid by company in Rs
  20. NumCompaniesWorked: The total number of comapnies employee has worked.
  21. Over18: Whether Employee is above 18 age or not.
  22. OverTime: Whether employee do OverTime or not.
  23. PercentSalaryHike: The percent incraese in salary given to employee.
  24. Perfrormance Rating: The performance rating given to employee given as 1 ‘Low’ 2 ‘Good’ 3 ‘Excellent’ 4 ‘Outstanding’
  25. RelationshipSatisfaction: The relastionship satisfaction rating by employee given as 1 ‘Low’ 2 ‘Medium’ 3 ‘High’ 4 ‘Very High’
  26. StandardHours: StandardHours for an employe in week.
  27. StockOptionLevel:
  28. TotalWorkingYears: The total working years of employee.
  29. TrainingTimeLastYear: The total times for which employee was given training last year.
  30. WorkLifeBalance: The work life balance rating given by employee as 1 ‘Bad’ 2 ‘Good’ 3 ‘Better’ 4 ‘Best’
  31. YearsAtComany: Total yaers employee have been in comapny.
  32. YearsInCurrentRole: The total year employee has been in current role.
  33. YearsSinceLastPromotion: The total years after last promotion.
  34. YearWithCurrManager: The total year employee is with current manager.

Since some variable have values in character form so they were converted into numeric form as follow

  1. Attrition-> Attrition1, Yes=1, No=0
  2. BusinessTravel -> BusinessTravel1, “Non-Travel” = 1,“Travel_Rarely” = 2,
    Travel_Frequently" =3
  3. Department -> Department1, “Human Resources” = 1,“Research & Development”] = 2,
    “Travel_Frequently”] = 3
  4. EducationField -> EducationField1,“Human Resources” = 1, “Life Sciences”=2, “Marketing”= 3, “Medical” = 4, “Other” = 5, “Technical Degree” = 6

  5. Gender -> Gender1,“Female” = 1, “Male” = 2

  6. JobRole -> JobRole1,“Human Resources”= 1, “Healthcare Representative”= 2, “Laboratory Technician” = 3, “Manager”= 4, “Manufacturing Director” = 5, “Research Director” = 6, “Research Scientist” = 7, “Sales Executive” =8, “Sales Representative”= 9

  7. MaritalStatus-> MaritalStatus1“Divorced”= 1,“Married”=2“Single”= 3

  8. OverTime -> OverTime1, “Yes”=1, “No”= 0

Setting Working Directory

setwd("E:/Internship/Tasks/Project")
Employeedata <-read.csv(paste("HR-Employee-Attrition.csv",sep=""))
View(Employeedata)

Converting Character Variable into Numeric Vraiables

Employeedata$Attrition1[Employeedata$Attrition== "Yes"] <-1
Employeedata$Attrition1[Employeedata$Attrition== "No"] <-0


Employeedata$BusinessTravel1[Employeedata$BusinessTravel== "Non-Travel"] <-1
Employeedata$BusinessTravel1[Employeedata$BusinessTravel== "Travel_Rarely"] <-2
Employeedata$BusinessTravel1[Employeedata$BusinessTravel== "Travel_Frequently"] <-3

Employeedata$Department1[Employeedata$Department== "Human Resources"] <-1
Employeedata$Department1[Employeedata$Department== "Research & Development"] <-2
Employeedata$Department1[Employeedata$Department== "Sales"] <-3

Employeedata$EducationField1[Employeedata$EducationField== "Human Resources"] <-1
Employeedata$EducationField1[Employeedata$EducationField== "Life Sciences"] <-2
Employeedata$EducationField1[Employeedata$EducationField== "Marketing"] <-3
Employeedata$EducationField1[Employeedata$EducationField== "Medical"] <-4
Employeedata$EducationField1[Employeedata$EducationField== "Other"] <-5
Employeedata$EducationField1[Employeedata$EducationField== "Technical Degree"] <-6



Employeedata$Gender1[Employeedata$Gender== "Female"] <-1
Employeedata$Gender1[Employeedata$Gender== "Male"] <-2


Employeedata$JobRole1[Employeedata$JobRole== "Human Resources"] <-1
Employeedata$JobRole1[Employeedata$JobRole== "Healthcare Representative"] <-2
Employeedata$JobRole1[Employeedata$JobRole== "Laboratory Technician"] <-3
Employeedata$JobRole1[Employeedata$JobRole== "Manager"] <-4
Employeedata$JobRole1[Employeedata$JobRole== "Manufacturing Director"] <-5
Employeedata$JobRole1[Employeedata$JobRole== "Research Director"] <-6
Employeedata$JobRole1[Employeedata$JobRole== "Research Scientist"] <-7
Employeedata$JobRole1[Employeedata$JobRole== "Sales Executive"] <-8
Employeedata$JobRole1[Employeedata$JobRole== "Sales Representative"] <-9

Employeedata$MaritalStatus1[Employeedata$MaritalStatus== "Divorced"] <-1
Employeedata$MaritalStatus1[Employeedata$MaritalStatus== "Married"] <-2
Employeedata$MaritalStatus1[Employeedata$MaritalStatus== "Single"] <-3


Employeedata$OverTime1[Employeedata$OverTime== "Yes"] <-1
Employeedata$OverTime1[Employeedata$OverTime== "No"] <-0
dim(Employeedata)
## [1] 1470   43

Creating a Data Frame “Num” containing only numeric relevant variable

Num <- subset(Employeedata, select = c(1,4,6,7,11,13,14,15,17,19,20,21,24,25,26,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43))
View(Num)

Regression Analysis

Modelling Attrtion as a function of ï..Age, BusinessTravel1, DailyRate, Department1, DistanceFromHome, Education, EducationField1, EnvironmentSatisfaction, Gender1, HourlyRate, JobInvolvement, JobLevel, JobRole1, JobSatisfaction, MaritalStatus1, MonthlyIncome, MonthlyRate, NumCompaniesWorked, OverTime1, PercentSalaryHike, PerformanceRating, RelationshipSatisfaction, StockOptionLevel, TotalWorkingYears, TrainingTimesLastYear, WorkLifeBalance, YearsAtCompany, YearsInCurrentRole, YearsSinceLastPromotion and YearsWithCurrManager

Model <-lm(Attrition1 ~ ï..Age + BusinessTravel1 + DailyRate + Department1 + DistanceFromHome + Education + EducationField1 + EnvironmentSatisfaction + Gender1 + HourlyRate + JobInvolvement + JobLevel + JobRole1 + JobSatisfaction + MaritalStatus1 + MonthlyIncome + MonthlyRate + NumCompaniesWorked + OverTime1 + PercentSalaryHike + PerformanceRating + RelationshipSatisfaction + StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear + WorkLifeBalance + YearsAtCompany + YearsInCurrentRole + YearsSinceLastPromotion + YearsWithCurrManager, data=Num)
summary(Model)
## 
## Call:
## lm(formula = Attrition1 ~ ï..Age + BusinessTravel1 + DailyRate + 
##     Department1 + DistanceFromHome + Education + EducationField1 + 
##     EnvironmentSatisfaction + Gender1 + HourlyRate + JobInvolvement + 
##     JobLevel + JobRole1 + JobSatisfaction + MaritalStatus1 + 
##     MonthlyIncome + MonthlyRate + NumCompaniesWorked + OverTime1 + 
##     PercentSalaryHike + PerformanceRating + RelationshipSatisfaction + 
##     StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear + 
##     WorkLifeBalance + YearsAtCompany + YearsInCurrentRole + YearsSinceLastPromotion + 
##     YearsWithCurrManager, data = Num)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.58773 -0.21194 -0.08635  0.07390  1.13505 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.886e-01  1.425e-01   2.728 0.006455 ** 
## ï..Age                   -3.783e-03  1.336e-03  -2.832 0.004697 ** 
## BusinessTravel1           8.250e-02  1.610e-02   5.125 3.37e-07 ***
## DailyRate                -3.107e-05  2.135e-05  -1.455 0.145770    
## Department1               6.934e-02  2.365e-02   2.932 0.003423 ** 
## DistanceFromHome          3.525e-03  1.059e-03   3.330 0.000892 ***
## Education                 2.293e-04  8.573e-03   0.027 0.978663    
## EducationField1           6.534e-03  6.447e-03   1.014 0.310992    
## EnvironmentSatisfaction  -4.044e-02  7.856e-03  -5.148 3.00e-07 ***
## Gender1                   3.898e-02  1.755e-02   2.221 0.026496 *  
## HourlyRate               -2.528e-04  4.230e-04  -0.598 0.550236    
## JobInvolvement           -6.148e-02  1.209e-02  -5.087 4.12e-07 ***
## JobLevel                 -3.477e-02  2.638e-02  -1.318 0.187610    
## JobRole1                 -6.889e-03  5.197e-03  -1.326 0.185181    
## JobSatisfaction          -3.861e-02  7.795e-03  -4.953 8.16e-07 ***
## MaritalStatus1            5.329e-02  1.582e-02   3.369 0.000774 ***
## MonthlyIncome             1.108e-06  5.999e-06   0.185 0.853543    
## MonthlyRate               5.144e-07  1.205e-06   0.427 0.669557    
## NumCompaniesWorked        1.694e-02  3.830e-03   4.423 1.04e-05 ***
## OverTime1                 2.073e-01  1.918e-02  10.811  < 2e-16 ***
## PercentSalaryHike        -3.448e-03  3.697e-03  -0.933 0.351193    
## PerformanceRating         2.318e-02  3.747e-02   0.619 0.536343    
## RelationshipSatisfaction -2.193e-02  7.949e-03  -2.759 0.005865 ** 
## StockOptionLevel         -2.389e-02  1.348e-02  -1.773 0.076463 .  
## TotalWorkingYears        -3.476e-03  2.404e-03  -1.446 0.148328    
## TrainingTimesLastYear    -1.264e-02  6.681e-03  -1.892 0.058715 .  
## WorkLifeBalance          -2.774e-02  1.216e-02  -2.282 0.022647 *  
## YearsAtCompany            5.993e-03  2.981e-03   2.011 0.044550 *  
## YearsInCurrentRole       -1.027e-02  3.881e-03  -2.647 0.008213 ** 
## YearsSinceLastPromotion   1.111e-02  3.421e-03   3.247 0.001193 ** 
## YearsWithCurrManager     -1.046e-02  3.979e-03  -2.628 0.008681 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3263 on 1439 degrees of freedom
## Multiple R-squared:  0.2294, Adjusted R-squared:  0.2133 
## F-statistic: 14.28 on 30 and 1439 DF,  p-value: < 2.2e-16

Results:

We found that some factors affect the attrition of employee very much while some factors totall not. The main factors which cause attrition of employee are age of employee, how much business tarvel he make, in which business department he is involved,office distance from home, enviromant satisfaction,gender,JobInvolvement, his Job Satisfaction rate ,his MaritalStatus,Number of Companies he worked, wherther he does overtime or not, his RelationshipSatisfaction, WorklifeBalance, YearsAtCompany, YearsInCurrentRole,Years Since he lost promoted and Years with current manager

Conclusion:

The factor which affect attrition rates are given above.

The factors which increases attrition rate in employees are:

(because of their positive coefficient in Model)

  1. More Business Travel
  2. Office Distance From Home
  3. Worked in more number of companies
  4. Need of ovetime to complete work
  5. More number in present company
  6. If he is not promoted from long time.

The factors which decreases attrition rate in employees are:

(because of their negative coefficient in Model)

  1. Higher Age of Employee
  2. Good Environment Satisfaction
  3. Good Job Involvement
  4. Good Job Satisfaction
  5. Good Relationship Satisfaction
  6. Good Work Life Balance
  7. More number of years in Current Role
  8. More number of years with Current Manager.

The factors which adversly affect Attrition Rate means to very high extent are:

  1. More Business Travel
  2. Office Distance From Home
  3. Worked in more number of companies
  4. Need of ovetime to complete work
  5. Good Environment Satisfaction
  6. Good Job Involvement
  7. Good Job Satisfaction

Summary Statistics

summary(Employeedata)
##      ï..Age      Attrition            BusinessTravel   DailyRate     
##  Min.   :18.00   No :1233   Non-Travel       : 150   Min.   : 102.0  
##  1st Qu.:30.00   Yes: 237   Travel_Frequently: 277   1st Qu.: 465.0  
##  Median :36.00              Travel_Rarely    :1043   Median : 802.0  
##  Mean   :36.92                                       Mean   : 802.5  
##  3rd Qu.:43.00                                       3rd Qu.:1157.0  
##  Max.   :60.00                                       Max.   :1499.0  
##                                                                      
##                   Department  DistanceFromHome   Education    
##  Human Resources       : 63   Min.   : 1.000   Min.   :1.000  
##  Research & Development:961   1st Qu.: 2.000   1st Qu.:2.000  
##  Sales                 :446   Median : 7.000   Median :3.000  
##                               Mean   : 9.193   Mean   :2.913  
##                               3rd Qu.:14.000   3rd Qu.:4.000  
##                               Max.   :29.000   Max.   :5.000  
##                                                               
##           EducationField EmployeeCount EmployeeNumber  
##  Human Resources : 27    Min.   :1     Min.   :   1.0  
##  Life Sciences   :606    1st Qu.:1     1st Qu.: 491.2  
##  Marketing       :159    Median :1     Median :1020.5  
##  Medical         :464    Mean   :1     Mean   :1024.9  
##  Other           : 82    3rd Qu.:1     3rd Qu.:1555.8  
##  Technical Degree:132    Max.   :1     Max.   :2068.0  
##                                                        
##  EnvironmentSatisfaction    Gender      HourlyRate     JobInvolvement
##  Min.   :1.000           Female:588   Min.   : 30.00   Min.   :1.00  
##  1st Qu.:2.000           Male  :882   1st Qu.: 48.00   1st Qu.:2.00  
##  Median :3.000                        Median : 66.00   Median :3.00  
##  Mean   :2.722                        Mean   : 65.89   Mean   :2.73  
##  3rd Qu.:4.000                        3rd Qu.: 83.75   3rd Qu.:3.00  
##  Max.   :4.000                        Max.   :100.00   Max.   :4.00  
##                                                                      
##     JobLevel                          JobRole    JobSatisfaction
##  Min.   :1.000   Sales Executive          :326   Min.   :1.000  
##  1st Qu.:1.000   Research Scientist       :292   1st Qu.:2.000  
##  Median :2.000   Laboratory Technician    :259   Median :3.000  
##  Mean   :2.064   Manufacturing Director   :145   Mean   :2.729  
##  3rd Qu.:3.000   Healthcare Representative:131   3rd Qu.:4.000  
##  Max.   :5.000   Manager                  :102   Max.   :4.000  
##                  (Other)                  :215                  
##   MaritalStatus MonthlyIncome    MonthlyRate    NumCompaniesWorked
##  Divorced:327   Min.   : 1009   Min.   : 2094   Min.   :0.000     
##  Married :673   1st Qu.: 2911   1st Qu.: 8047   1st Qu.:1.000     
##  Single  :470   Median : 4919   Median :14236   Median :2.000     
##                 Mean   : 6503   Mean   :14313   Mean   :2.693     
##                 3rd Qu.: 8379   3rd Qu.:20462   3rd Qu.:4.000     
##                 Max.   :19999   Max.   :26999   Max.   :9.000     
##                                                                   
##  Over18   OverTime   PercentSalaryHike PerformanceRating
##  Y:1470   No :1054   Min.   :11.00     Min.   :3.000    
##           Yes: 416   1st Qu.:12.00     1st Qu.:3.000    
##                      Median :14.00     Median :3.000    
##                      Mean   :15.21     Mean   :3.154    
##                      3rd Qu.:18.00     3rd Qu.:3.000    
##                      Max.   :25.00     Max.   :4.000    
##                                                         
##  RelationshipSatisfaction StandardHours StockOptionLevel TotalWorkingYears
##  Min.   :1.000            Min.   :80    Min.   :0.0000   Min.   : 0.00    
##  1st Qu.:2.000            1st Qu.:80    1st Qu.:0.0000   1st Qu.: 6.00    
##  Median :3.000            Median :80    Median :1.0000   Median :10.00    
##  Mean   :2.712            Mean   :80    Mean   :0.7939   Mean   :11.28    
##  3rd Qu.:4.000            3rd Qu.:80    3rd Qu.:1.0000   3rd Qu.:15.00    
##  Max.   :4.000            Max.   :80    Max.   :3.0000   Max.   :40.00    
##                                                                           
##  TrainingTimesLastYear WorkLifeBalance YearsAtCompany   YearsInCurrentRole
##  Min.   :0.000         Min.   :1.000   Min.   : 0.000   Min.   : 0.000    
##  1st Qu.:2.000         1st Qu.:2.000   1st Qu.: 3.000   1st Qu.: 2.000    
##  Median :3.000         Median :3.000   Median : 5.000   Median : 3.000    
##  Mean   :2.799         Mean   :2.761   Mean   : 7.008   Mean   : 4.229    
##  3rd Qu.:3.000         3rd Qu.:3.000   3rd Qu.: 9.000   3rd Qu.: 7.000    
##  Max.   :6.000         Max.   :4.000   Max.   :40.000   Max.   :18.000    
##                                                                           
##  YearsSinceLastPromotion YearsWithCurrManager   Attrition1    
##  Min.   : 0.000          Min.   : 0.000       Min.   :0.0000  
##  1st Qu.: 0.000          1st Qu.: 2.000       1st Qu.:0.0000  
##  Median : 1.000          Median : 3.000       Median :0.0000  
##  Mean   : 2.188          Mean   : 4.123       Mean   :0.1612  
##  3rd Qu.: 3.000          3rd Qu.: 7.000       3rd Qu.:0.0000  
##  Max.   :15.000          Max.   :17.000       Max.   :1.0000  
##                                                               
##  BusinessTravel1  Department1    EducationField1    Gender1   
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.0  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.0  
##  Median :2.000   Median :2.000   Median :3.000   Median :2.0  
##  Mean   :2.086   Mean   :2.261   Mean   :3.248   Mean   :1.6  
##  3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:4.000   3rd Qu.:2.0  
##  Max.   :3.000   Max.   :3.000   Max.   :6.000   Max.   :2.0  
##                                                               
##     JobRole1     MaritalStatus1    OverTime1    
##  Min.   :1.000   Min.   :1.000   Min.   :0.000  
##  1st Qu.:3.000   1st Qu.:2.000   1st Qu.:0.000  
##  Median :6.000   Median :2.000   Median :0.000  
##  Mean   :5.512   Mean   :2.097   Mean   :0.283  
##  3rd Qu.:8.000   3rd Qu.:3.000   3rd Qu.:1.000  
##  Max.   :9.000   Max.   :3.000   Max.   :1.000  
## 

Summary Statstics using Describe()

library("psych", lib.loc="~/R/win-library/3.4")
describe(Employeedata)
##                          vars    n     mean      sd  median  trimmed
## ï..Age                      1 1470    36.92    9.14    36.0    36.47
## Attrition*                  2 1470     1.16    0.37     1.0     1.08
## BusinessTravel*             3 1470     2.61    0.67     3.0     2.76
## DailyRate                   4 1470   802.49  403.51   802.0   803.83
## Department*                 5 1470     2.26    0.53     2.0     2.25
## DistanceFromHome            6 1470     9.19    8.11     7.0     8.08
## Education                   7 1470     2.91    1.02     3.0     2.98
## EducationField*             8 1470     3.25    1.33     3.0     3.10
## EmployeeCount               9 1470     1.00    0.00     1.0     1.00
## EmployeeNumber             10 1470  1024.87  602.02  1020.5  1023.40
## EnvironmentSatisfaction    11 1470     2.72    1.09     3.0     2.78
## Gender*                    12 1470     1.60    0.49     2.0     1.62
## HourlyRate                 13 1470    65.89   20.33    66.0    66.02
## JobInvolvement             14 1470     2.73    0.71     3.0     2.74
## JobLevel                   15 1470     2.06    1.11     2.0     1.90
## JobRole*                   16 1470     5.46    2.46     6.0     5.61
## JobSatisfaction            17 1470     2.73    1.10     3.0     2.79
## MaritalStatus*             18 1470     2.10    0.73     2.0     2.12
## MonthlyIncome              19 1470  6502.93 4707.96  4919.0  5667.24
## MonthlyRate                20 1470 14313.10 7117.79 14235.5 14286.48
## NumCompaniesWorked         21 1470     2.69    2.50     2.0     2.36
## Over18*                    22 1470     1.00    0.00     1.0     1.00
## OverTime*                  23 1470     1.28    0.45     1.0     1.23
## PercentSalaryHike          24 1470    15.21    3.66    14.0    14.80
## PerformanceRating          25 1470     3.15    0.36     3.0     3.07
## RelationshipSatisfaction   26 1470     2.71    1.08     3.0     2.77
## StandardHours              27 1470    80.00    0.00    80.0    80.00
## StockOptionLevel           28 1470     0.79    0.85     1.0     0.67
## TotalWorkingYears          29 1470    11.28    7.78    10.0    10.37
## TrainingTimesLastYear      30 1470     2.80    1.29     3.0     2.72
## WorkLifeBalance            31 1470     2.76    0.71     3.0     2.77
## YearsAtCompany             32 1470     7.01    6.13     5.0     5.99
## YearsInCurrentRole         33 1470     4.23    3.62     3.0     3.85
## YearsSinceLastPromotion    34 1470     2.19    3.22     1.0     1.48
## YearsWithCurrManager       35 1470     4.12    3.57     3.0     3.77
## Attrition1                 36 1470     0.16    0.37     0.0     0.08
## BusinessTravel1            37 1470     2.09    0.53     2.0     2.11
## Department1                38 1470     2.26    0.53     2.0     2.25
## EducationField1            39 1470     3.25    1.33     3.0     3.10
## Gender1                    40 1470     1.60    0.49     2.0     1.62
## JobRole1                   41 1470     5.51    2.37     6.0     5.61
## MaritalStatus1             42 1470     2.10    0.73     2.0     2.12
## OverTime1                  43 1470     0.28    0.45     0.0     0.23
##                              mad  min   max range  skew kurtosis     se
## ï..Age                      8.90   18    60    42  0.41    -0.41   0.24
## Attrition*                  0.00    1     2     1  1.84     1.39   0.01
## BusinessTravel*             0.00    1     3     2 -1.44     0.69   0.02
## DailyRate                 510.01  102  1499  1397  0.00    -1.21  10.52
## Department*                 0.00    1     3     2  0.17    -0.40   0.01
## DistanceFromHome            7.41    1    29    28  0.96    -0.23   0.21
## Education                   1.48    1     5     4 -0.29    -0.56   0.03
## EducationField*             1.48    1     6     5  0.55    -0.69   0.03
## EmployeeCount               0.00    1     1     0   NaN      NaN   0.00
## EmployeeNumber            790.97    1  2068  2067  0.02    -1.23  15.70
## EnvironmentSatisfaction     1.48    1     4     3 -0.32    -1.20   0.03
## Gender*                     0.00    1     2     1 -0.41    -1.83   0.01
## HourlyRate                 26.69   30   100    70 -0.03    -1.20   0.53
## JobInvolvement              0.00    1     4     3 -0.50     0.26   0.02
## JobLevel                    1.48    1     5     4  1.02     0.39   0.03
## JobRole*                    2.97    1     9     8 -0.36    -1.20   0.06
## JobSatisfaction             1.48    1     4     3 -0.33    -1.22   0.03
## MaritalStatus*              1.48    1     3     2 -0.15    -1.12   0.02
## MonthlyIncome            3260.24 1009 19999 18990  1.37     0.99 122.79
## MonthlyRate              9201.76 2094 26999 24905  0.02    -1.22 185.65
## NumCompaniesWorked          1.48    0     9     9  1.02     0.00   0.07
## Over18*                     0.00    1     1     0   NaN      NaN   0.00
## OverTime*                   0.00    1     2     1  0.96    -1.07   0.01
## PercentSalaryHike           2.97   11    25    14  0.82    -0.31   0.10
## PerformanceRating           0.00    3     4     1  1.92     1.68   0.01
## RelationshipSatisfaction    1.48    1     4     3 -0.30    -1.19   0.03
## StandardHours               0.00   80    80     0   NaN      NaN   0.00
## StockOptionLevel            1.48    0     3     3  0.97     0.35   0.02
## TotalWorkingYears           5.93    0    40    40  1.11     0.91   0.20
## TrainingTimesLastYear       1.48    0     6     6  0.55     0.48   0.03
## WorkLifeBalance             0.00    1     4     3 -0.55     0.41   0.02
## YearsAtCompany              4.45    0    40    40  1.76     3.91   0.16
## YearsInCurrentRole          4.45    0    18    18  0.92     0.47   0.09
## YearsSinceLastPromotion     1.48    0    15    15  1.98     3.59   0.08
## YearsWithCurrManager        4.45    0    17    17  0.83     0.16   0.09
## Attrition1                  0.00    0     1     1  1.84     1.39   0.01
## BusinessTravel1             0.00    1     3     2  0.08     0.41   0.01
## Department1                 0.00    1     3     2  0.17    -0.40   0.01
## EducationField1             1.48    1     6     5  0.55    -0.69   0.03
## Gender1                     0.00    1     2     1 -0.41    -1.83   0.01
## JobRole1                    2.97    1     9     8 -0.28    -1.32   0.06
## MaritalStatus1              1.48    1     3     2 -0.15    -1.12   0.02
## OverTime1                   0.00    0     1     1  0.96    -1.07   0.01

Reading more details about Data

One-Way Contingency tables

Attrition Count

mytable <-xtabs(~Attrition, data =Employeedata)
mytable
## Attrition
##   No  Yes 
## 1233  237

Type of Travelling Involved

mytable <-xtabs(~BusinessTravel, data =Employeedata)
mytable
## BusinessTravel
##        Non-Travel Travel_Frequently     Travel_Rarely 
##               150               277              1043

Number of Employees in Different Department

mytable <-xtabs(~Department, data =Employeedata)
mytable
## Department
##        Human Resources Research & Development                  Sales 
##                     63                    961                    446

Type of Education of Employee

mytable <-xtabs(~Education, data =Employeedata)
mytable
## Education
##   1   2   3   4   5 
## 170 282 572 398  48

Different EducationField of Employees

mytable <-xtabs(~EducationField, data =Employeedata)
mytable
## EducationField
##  Human Resources    Life Sciences        Marketing          Medical 
##               27              606              159              464 
##            Other Technical Degree 
##               82              132

Types of EnvironmentSatisfaction of Employees

mytable <-xtabs(~EnvironmentSatisfaction, data =Employeedata)
mytable
## EnvironmentSatisfaction
##   1   2   3   4 
## 284 287 453 446

Number of Males and Females in Company

mytable <-xtabs(~Gender, data =Employeedata)
mytable
## Gender
## Female   Male 
##    588    882

Kinds of JobInvolvement of Employee in Company

mytable <-xtabs(~JobInvolvement, data =Employeedata)
mytable
## JobInvolvement
##   1   2   3   4 
##  83 375 868 144

Types of Job Level

mytable <-xtabs(~JobLevel,data=Employeedata)
mytable
## JobLevel
##   1   2   3   4   5 
## 543 534 218 106  69

Types of Job Role

mytable <-xtabs(~JobRole,data=Employeedata)
mytable
## JobRole
## Healthcare Representative           Human Resources 
##                       131                        52 
##     Laboratory Technician                   Manager 
##                       259                       102 
##    Manufacturing Director         Research Director 
##                       145                        80 
##        Research Scientist           Sales Executive 
##                       292                       326 
##      Sales Representative 
##                        83

Types of JobSatisfaction

mytable <-xtabs(~JobSatisfaction,data=Employeedata)
mytable
## JobSatisfaction
##   1   2   3   4 
## 289 280 442 459

Employees Maried or Not

mytable <-xtabs(~MaritalStatus,data=Employeedata)
mytable
## MaritalStatus
## Divorced  Married   Single 
##      327      673      470

Over 18 or not

mytable <-xtabs(~Over18,data=Employeedata)
mytable
## Over18
##    Y 
## 1470

How many Employees do Overtime

mytable <-xtabs(~OverTime,data=Employeedata)
mytable
## OverTime
##   No  Yes 
## 1054  416

Distribution of Perforamce Rating

mytable <-xtabs(~PerformanceRating,data=Employeedata)
mytable
## PerformanceRating
##    3    4 
## 1244  226

Distribution of RealtionshipSatisfaction

mytable <-xtabs(~RelationshipSatisfaction, data=Employeedata)
mytable
## RelationshipSatisfaction
##   1   2   3   4 
## 276 303 459 432

Standard Hours of Employees

mytable <-xtabs(~StandardHours, data=Employeedata)
mytable
## StandardHours
##   80 
## 1470

Type of StockOptionsGiven

mytable <-xtabs(~StockOptionLevel, data=Employeedata)
mytable
## StockOptionLevel
##   0   1   2   3 
## 631 596 158  85

Work Life Balance

mytable <-xtabs(~WorkLifeBalance, data = Employeedata)
mytable
## WorkLifeBalance
##   1   2   3   4 
##  80 344 893 153

Two Way Contingency Tables

Effect of Travel on Attrition

mytable <-xtabs(~BusinessTravel + Attrition, data =Employeedata)
prop.table(mytable,1)
##                    Attrition
## BusinessTravel             No       Yes
##   Non-Travel        0.9200000 0.0800000
##   Travel_Frequently 0.7509025 0.2490975
##   Travel_Rarely     0.8504314 0.1495686

Finding: Seems like Employee Facing heavy travel has more attrition rate

Departmentwise Attrition Rate

mytable <-xtabs(~Department + Attrition, data =Employeedata)
prop.table(mytable,1)
##                         Attrition
## Department                      No       Yes
##   Human Resources        0.8095238 0.1904762
##   Research & Development 0.8616025 0.1383975
##   Sales                  0.7937220 0.2062780

Finding: Attrition rate does not very much across different departments

Educationwise Attrition Rate

mytable <-xtabs(~Education + Attrition, data =Employeedata)
prop.table(mytable,1)
##          Attrition
## Education        No       Yes
##         1 0.8176471 0.1823529
##         2 0.8439716 0.1560284
##         3 0.8269231 0.1730769
##         4 0.8542714 0.1457286
##         5 0.8958333 0.1041667

Finding: Attrition rate does not very much across different Education

EducationField wise Attrition Rate

mytable <-xtabs(~EducationField + Attrition, data =Employeedata)
prop.table(mytable,1)
##                   Attrition
## EducationField            No       Yes
##   Human Resources  0.7407407 0.2592593
##   Life Sciences    0.8531353 0.1468647
##   Marketing        0.7798742 0.2201258
##   Medical          0.8642241 0.1357759
##   Other            0.8658537 0.1341463
##   Technical Degree 0.7575758 0.2424242

Finding: Attrition rate donot vary much between different EducationField

Effect of EnvironmentSatisfaction on Attrition

mytable <-xtabs(~EnvironmentSatisfaction + Attrition, data =Employeedata)
prop.table(mytable,1)
##                        Attrition
## EnvironmentSatisfaction        No       Yes
##                       1 0.7464789 0.2535211
##                       2 0.8501742 0.1498258
##                       3 0.8631347 0.1368653
##                       4 0.8654709 0.1345291

Finding: Lower Environment Satisfaction rate increases Attrition Rate

Effect of Gender on Attrition Rate

mytable <-xtabs(~Gender + Attrition, data =Employeedata)
prop.table(mytable,1)
##         Attrition
## Gender          No       Yes
##   Female 0.8520408 0.1479592
##   Male   0.8299320 0.1700680

Finding: So Gender doesnot effect Attrition Rate much

Effect of JobInvolvement on Attrition Rate

mytable <-xtabs(~JobInvolvement + Attrition, data =Employeedata)
prop.table(mytable,1)
##               Attrition
## JobInvolvement         No        Yes
##              1 0.66265060 0.33734940
##              2 0.81066667 0.18933333
##              3 0.85599078 0.14400922
##              4 0.90972222 0.09027778

Finding: Level of JobInvolvement also plays a good role in attrition rate. High Job Involvemnet reduces attrition rate

Effect of JobLevel on Attrition Rate

mytable <-xtabs(~JobLevel + Attrition, data =Employeedata)
prop.table(mytable,1)
##         Attrition
## JobLevel         No        Yes
##        1 0.73664825 0.26335175
##        2 0.90262172 0.09737828
##        3 0.85321101 0.14678899
##        4 0.95283019 0.04716981
##        5 0.92753623 0.07246377

Finding: Level of JobLevel also plays a role in attrition rate as percentage of attrition is maximum for lowest JobLevl Employees but it is not that strict for further levels

Effect of JobRole on Attrition Rate

mytable <-xtabs(~JobRole + Attrition, data =Employeedata)
prop.table(mytable,1)
##                            Attrition
## JobRole                             No        Yes
##   Healthcare Representative 0.93129771 0.06870229
##   Human Resources           0.76923077 0.23076923
##   Laboratory Technician     0.76061776 0.23938224
##   Manager                   0.95098039 0.04901961
##   Manufacturing Director    0.93103448 0.06896552
##   Research Director         0.97500000 0.02500000
##   Research Scientist        0.83904110 0.16095890
##   Sales Executive           0.82515337 0.17484663
##   Sales Representative      0.60240964 0.39759036

Finding: Attrition Rate depend on JobRole, some JobRole have 39% Attrition Rate while some JobRole have 4% Attrition Rate

Effect of JobSatisfaction on Attrition Rate

mytable <-xtabs(~JobSatisfaction + Attrition, data =Employeedata)
prop.table(mytable,1)
##                Attrition
## JobSatisfaction        No       Yes
##               1 0.7716263 0.2283737
##               2 0.8357143 0.1642857
##               3 0.8348416 0.1651584
##               4 0.8867102 0.1132898

Finding: Higher Job Satisfaction Rate decreases attrition rate

Effect of MaritalStatus on Attrition Rate

mytable <-xtabs(~MaritalStatus + Attrition, data =Employeedata)
prop.table(mytable,1)
##              Attrition
## MaritalStatus        No       Yes
##      Divorced 0.8990826 0.1009174
##      Married  0.8751857 0.1248143
##      Single   0.7446809 0.2553191

Finding: Divorced People have lowest Attrition Rate

Effect of OverTime on Attrition Rate

mytable <-xtabs(~OverTime + Attrition, data =Employeedata)
prop.table(mytable,1)
##         Attrition
## OverTime        No       Yes
##      No  0.8956357 0.1043643
##      Yes 0.6947115 0.3052885

Finding: People doing more OverTime have higher Attrition Rate

Effect of PerformanceRating on Attrition Rate

mytable <-xtabs(~PerformanceRating + Attrition, data =Employeedata)
prop.table(mytable,1)
##                  Attrition
## PerformanceRating        No       Yes
##                 3 0.8392283 0.1607717
##                 4 0.8362832 0.1637168

Finding: PerformanceRating does not effect Attrition Rate much

Effect of RelationshipSatisfaction on Attrition Rate

mytable <-xtabs(~RelationshipSatisfaction  + Attrition, data =Employeedata)
prop.table(mytable,1)
##                         Attrition
## RelationshipSatisfaction        No       Yes
##                        1 0.7934783 0.2065217
##                        2 0.8514851 0.1485149
##                        3 0.8453159 0.1546841
##                        4 0.8518519 0.1481481

Finding: Bad RelationshipSatisfaction increases Attrition Rate

Effect of StockOptionLevel on Attrition Rate

mytable <-xtabs(~StockOptionLevel  + Attrition, data =Employeedata)
prop.table(mytable,1)
##                 Attrition
## StockOptionLevel         No        Yes
##                0 0.75594295 0.24405705
##                1 0.90604027 0.09395973
##                2 0.92405063 0.07594937
##                3 0.82352941 0.17647059

Finding: StockoptionLeveldont have any definite effect on Attrition rate

Effect of WorkLifeBalance on Attrition Rate

mytable <-xtabs(~WorkLifeBalance  + Attrition, data =Employeedata)
prop.table(mytable,1)
##                Attrition
## WorkLifeBalance        No       Yes
##               1 0.6875000 0.3125000
##               2 0.8313953 0.1686047
##               3 0.8577828 0.1422172
##               4 0.8235294 0.1764706

Finding: Poor Worklifebalance increases Attrition Rate

Boxplots

Boxplot to see distribution of Age

boxplot(Employeedata$ï..Age,main="Boxplot Showing Variation of Age")

mean(Employeedata$ï..Age)
## [1] 36.92381

Boxplot to see Variation of DailyRate

boxplot(Employeedata$DailyRate,main="Boxplot Showing Variation of DailyRate")

mean(Employeedata$DailyRate)
## [1] 802.4857

Boxplot to see Variation of DistanceFromHome

boxplot(Employeedata$DistanceFromHome,ylim=c(-5,20),main="Boxplot Showing Variation of DistanceFromHome")

mean(Employeedata$DistanceFromHome)
## [1] 9.192517

Boxplot to see Variation of HourlyRate

boxplot(Employeedata$HourlyRate,main="Boxplot Showing Variation of HourlyRate")

mean(Employeedata$HourlyRate)
## [1] 65.89116

Boxplot to see Variation of MonthlyIncome

boxplot(Employeedata$MonthlyIncome,ylim=c(0,17000),main="Boxplot Showing Variation of MontlyIncome")

mean(Employeedata$MonthlyIncome)
## [1] 6502.931

Boxplot to see Variation of MonthlyRate

boxplot(Employeedata$MonthlyRate,ylim=c(),main="Boxplot Showing Variation of MonthlyRate")

mean(Employeedata$MonthlyRate)
## [1] 14313.1

Boxplot to see Variation of Number Of Companies Worked

boxplot(Employeedata$NumCompaniesWorked,ylim=c(),main="Boxplot Showing Variation of Number of Companies Worked")

mean(Employeedata$NumCompaniesWorked)
## [1] 2.693197

Boxplot to see Distribution of PercentSalaryHike

boxplot(Employeedata$PercentSalaryHike,ylim=c(),main="Boxplot Showing Variation of Number of Companies Worked")

mean(Employeedata$PercentSalaryHike)
## [1] 15.20952

Boxplot to see Distribution of Total Working Years

boxplot(Employeedata$TotalWorkingYears,ylim=c(),main="Boxplot Showing Variation of Total Working Years of Employee")

mean(Employeedata$TotalWorkingYears)
## [1] 11.27959

Boxplot to see Distribution of Training Time Last Year

boxplot(Employeedata$TrainingTimesLastYear,ylim=c(),main="Boxplot Showing Variation of Training Time Last Year of Employee")

mean(Employeedata$TrainingTimesLastYear)
## [1] 2.79932

Boxplot to see Variation Of Years At Company

boxplot(Employeedata$YearsAtCompany,ylim=c(0,20),main="Boxplot Showing Variation of Years At Company for Employee")

mean(Employeedata$YearsAtCompany)
## [1] 7.008163

Boxplot to see Variation Of Years in Current Role

boxplot(Employeedata$YearsInCurrentRole,ylim=c(),main="Boxplot Showing Variation of Years In Current Role for Employee")

mean(Employeedata$YearsInCurrentRole)
## [1] 4.229252

Boxplot to see Variation Of Years Since Last Promotion

boxplot(Employeedata$YearsSinceLastPromotion,ylim=c(),main="Boxplot Showing Variation of Years Since Last Promotion")

mean(Employeedata$YearsSinceLastPromotion)
## [1] 2.187755

Boxplot to see Variation Of Years With Current Manager

boxplot(Employeedata$YearsWithCurrManager,ylim=c(),main="Boxplot Showing Variation of Years With Current Manager")

mean(Employeedata$YearsWithCurrManager)
## [1] 4.123129

Histograms

Histogram showing Attrition Rate

plot(Employeedata$Attrition,xlim=c(),ylim=c(0,1500),ylab="Number Of Employee",main="Attrition   Rate   Counts")

Histogram showing BusinessTravel Variance

plot(Employeedata$BusinessTravel,xlim=c(),ylim=c(),ylab="Count Of Employee",main="Variation Of Travel")

Variance of Department

plot(Employeedata$Department,xlim=c(),ylim=c(),ylab="Count Of Employee",main="Variation Across Department")

Histogram showing Education Background

hist(Employeedata$Education,col='grey')

Variation of Different Education Field

plot(Employeedata$EducationField, ylab="Number OF Employees",main="Employees in Departments")

Histogram showing Environment Satisfaction

hist(Employeedata$EnvironmentSatisfaction,col='grey')

Histogram Showing Hourly Rate

hist(Employeedata$HourlyRate,col='grey')

JobInvolvement Variance

hist(Employeedata$JobInvolvement,col='grey')

JobLevel Variance

hist(Employeedata$JobLevel,col='grey')

JobSatisfaction Variance

hist(Employeedata$JobSatisfaction,col='grey',main="Employee Satisfaction Variance")

Monthly Income Variance

hist(Employeedata$MonthlyIncome,breaks=20,col='grey',xlim=c(0,20000))

Monthly Rate Variance

hist(Employeedata$MonthlyRate,col='grey',xlim=c(0,30000))

Number of Companies Worked

hist(Employeedata$NumCompaniesWorked,col='grey')

Percentage Hike Given Variation

hist(Employeedata$PercentSalaryHike,col='grey')

Performance Rating Distribution

hist(Employeedata$PerformanceRating,xlim=c(3,4),col='grey')

Distribution Of Relationship Satisfaction

hist(Employeedata$RelationshipSatisfaction,col='grey')

Distribution Of StockOptionLevel

hist(Employeedata$StockOptionLevel,col='grey')

Distribution Of TotalWorking years

hist(Employeedata$TotalWorkingYears,col='grey', main="Employee   Working    Years",breaks=25)

TrainingTime Last Year

hist(Employeedata$TrainingTimesLastYear,col='grey', main="Employee's Training Time Last Year")

Variance Of WorkLifeBalance among Employees

hist(Employeedata$WorkLifeBalance,col='grey', main="Employee's Work Life Balance Ratings")

Variation of YearsAtCompany

hist(Employeedata$YearsAtCompany,col='grey', main="Employee's Years At Company")

Variation of YearsInCurrentRole

hist(Employeedata$YearsInCurrentRole,col='grey',xlim=c(0,20),main="Employee's Years In Current Role")

Variation of YearsSinceLastPromotion

hist(Employeedata$YearsSinceLastPromotion,xlim=c(0,18),ylim=c(0,1000),col='grey',main="Employee's Years Since Last Promotion")

Variation of Employee’s Years With Current Manager

hist(Employeedata$YearsWithCurrManager,col='grey',main="Employee's Years With current Managers")

Creating Covariance Correlation Matrix

cor(Num,use="complete")
##                                ï..Age     DailyRate DistanceFromHome
## ï..Age                    1.000000000  0.0106609426     -0.001686120
## DailyRate                 0.010660943  1.0000000000     -0.004985337
## DistanceFromHome         -0.001686120 -0.0049853374      1.000000000
## Education                 0.208033731 -0.0168064332      0.021041826
## EnvironmentSatisfaction   0.010146428  0.0183548543     -0.016075327
## HourlyRate                0.024286543  0.0233814215      0.031130586
## JobInvolvement            0.029819959  0.0461348740      0.008783280
## JobLevel                  0.509604228  0.0029663349      0.005302731
## JobSatisfaction          -0.004891877  0.0305710078     -0.003668839
## MonthlyIncome             0.497854567  0.0077070589     -0.017014445
## MonthlyRate               0.028051167 -0.0321816015      0.027472864
## NumCompaniesWorked        0.299634758  0.0381534343     -0.029250804
## PercentSalaryHike         0.003633585  0.0227036775      0.040235377
## PerformanceRating         0.001903896  0.0004732963      0.027109618
## RelationshipSatisfaction  0.053534720  0.0078460310      0.006557475
## StockOptionLevel          0.037509712  0.0421427964      0.044871999
## TotalWorkingYears         0.680380536  0.0145147387      0.004628426
## TrainingTimesLastYear    -0.019620819  0.0024525427     -0.036942234
## WorkLifeBalance          -0.021490028 -0.0378480510     -0.026556004
## YearsAtCompany            0.311308770 -0.0340547676      0.009507720
## YearsInCurrentRole        0.212901056  0.0099320150      0.018844999
## YearsSinceLastPromotion   0.216513368 -0.0332289848      0.010028836
## YearsWithCurrManager      0.202088602 -0.0263631782      0.014406048
## Attrition1               -0.159205007 -0.0566519919      0.077923583
## BusinessTravel1          -0.011807332 -0.0155388905     -0.009696041
## Department1              -0.031882283  0.0071087137      0.017224804
## EducationField1          -0.040872848  0.0377092287      0.002013453
## Gender1                  -0.036310550 -0.0117161379     -0.001850528
## JobRole1                 -0.112807055 -0.0033580191      0.003574933
## MaritalStatus1           -0.095028910 -0.0695856414     -0.014437031
## OverTime1                 0.028062357  0.0091349699      0.025513635
##                             Education EnvironmentSatisfaction
## ï..Age                    0.208033731            0.0101464279
## DailyRate                -0.016806433            0.0183548543
## DistanceFromHome          0.021041826           -0.0160753270
## Education                 1.000000000           -0.0271283133
## EnvironmentSatisfaction  -0.027128313            1.0000000000
## HourlyRate                0.016774829           -0.0498569562
## JobInvolvement            0.042437634           -0.0082775982
## JobLevel                  0.101588886            0.0012116994
## JobSatisfaction          -0.011296117           -0.0067843526
## MonthlyIncome             0.094960677           -0.0062590878
## MonthlyRate              -0.026084197            0.0375996229
## NumCompaniesWorked        0.126316560            0.0125943232
## PercentSalaryHike        -0.011110941           -0.0317011952
## PerformanceRating        -0.024538791           -0.0295479523
## RelationshipSatisfaction -0.009118377            0.0076653835
## StockOptionLevel          0.018422220            0.0034321578
## TotalWorkingYears         0.148279697           -0.0026930704
## TrainingTimesLastYear    -0.025100241           -0.0193593083
## WorkLifeBalance           0.009819189            0.0276272955
## YearsAtCompany            0.069113696            0.0014575492
## YearsInCurrentRole        0.060235554            0.0180074601
## YearsSinceLastPromotion   0.054254334            0.0161936056
## YearsWithCurrManager      0.069065378           -0.0049987226
## Attrition1               -0.031372820           -0.1033689783
## BusinessTravel1          -0.008669840           -0.0113099347
## Department1               0.007996422           -0.0193952706
## EducationField1          -0.039592150            0.0431634907
## Gender1                  -0.016546827            0.0005083139
## JobRole1                  0.007721031           -0.0145621843
## MaritalStatus1            0.004052654           -0.0035934733
## OverTime1                -0.020321767            0.0701317268
##                             HourlyRate JobInvolvement      JobLevel
## ï..Age                    0.0242865426    0.029819959  0.5096042284
## DailyRate                 0.0233814215    0.046134874  0.0029663349
## DistanceFromHome          0.0311305856    0.008783280  0.0053027306
## Education                 0.0167748289    0.042437634  0.1015888862
## EnvironmentSatisfaction  -0.0498569562   -0.008277598  0.0012116994
## HourlyRate                1.0000000000    0.042860641 -0.0278534864
## JobInvolvement            0.0428606410    1.000000000 -0.0126298827
## JobLevel                 -0.0278534864   -0.012629883  1.0000000000
## JobSatisfaction          -0.0713346244   -0.021475910 -0.0019437080
## MonthlyIncome            -0.0157943044   -0.015271491  0.9502999135
## MonthlyRate              -0.0152967496   -0.016322079  0.0395629510
## NumCompaniesWorked        0.0221568834    0.015012413  0.1425011238
## PercentSalaryHike        -0.0090619863   -0.017204572 -0.0347304923
## PerformanceRating        -0.0021716974   -0.029071333 -0.0212220821
## RelationshipSatisfaction  0.0013304528    0.034296821  0.0216415105
## StockOptionLevel          0.0502633991    0.021522640  0.0139839105
## TotalWorkingYears        -0.0023336818   -0.005533182  0.7822078045
## TrainingTimesLastYear    -0.0085476852   -0.015337826 -0.0181905502
## WorkLifeBalance          -0.0046072338   -0.014616593  0.0378177456
## YearsAtCompany           -0.0195816162   -0.021355427  0.5347386874
## YearsInCurrentRole       -0.0241062202    0.008716963  0.3894467329
## YearsSinceLastPromotion  -0.0267155861   -0.024184292  0.3538853470
## YearsWithCurrManager     -0.0201232002    0.025975808  0.3752806078
## Attrition1               -0.0068455496   -0.130015957 -0.1691047509
## BusinessTravel1          -0.0041639831    0.029299959 -0.0116958303
## Department1              -0.0041437079   -0.024586062  0.1019631058
## EducationField1          -0.0219412191   -0.002655278 -0.0449326718
## Gender1                  -0.0004782971    0.017959755 -0.0394031027
## JobRole1                 -0.0165515330    0.007401840 -0.0668959855
## MaritalStatus1           -0.0178605059   -0.038497019 -0.0767694781
## OverTime1                -0.0077819744   -0.003506711  0.0005440478
##                          JobSatisfaction MonthlyIncome   MonthlyRate
## ï..Age                     -0.0048918771   0.497854567  0.0280511671
## DailyRate                   0.0305710078   0.007707059 -0.0321816015
## DistanceFromHome           -0.0036688392  -0.017014445  0.0274728635
## Education                  -0.0112961167   0.094960677 -0.0260841972
## EnvironmentSatisfaction    -0.0067843526  -0.006259088  0.0375996229
## HourlyRate                 -0.0713346244  -0.015794304 -0.0152967496
## JobInvolvement             -0.0214759103  -0.015271491 -0.0163220791
## JobLevel                   -0.0019437080   0.950299913  0.0395629510
## JobSatisfaction             1.0000000000  -0.007156742  0.0006439169
## MonthlyIncome              -0.0071567424   1.000000000  0.0348136261
## MonthlyRate                 0.0006439169   0.034813626  1.0000000000
## NumCompaniesWorked         -0.0556994260   0.149515216  0.0175213534
## PercentSalaryHike           0.0200020394  -0.027268586 -0.0064293459
## PerformanceRating           0.0022971971  -0.017120138 -0.0098114285
## RelationshipSatisfaction   -0.0124535932   0.025873436 -0.0040853293
## StockOptionLevel            0.0106902261   0.005407677 -0.0343228302
## TotalWorkingYears          -0.0201850727   0.772893246  0.0264424712
## TrainingTimesLastYear      -0.0057793350  -0.021736277  0.0014668806
## WorkLifeBalance            -0.0194587102   0.030683082  0.0079631575
## YearsAtCompany             -0.0038026279   0.514284826 -0.0236551067
## YearsInCurrentRole         -0.0023047852   0.363817667 -0.0128148744
## YearsSinceLastPromotion    -0.0182135678   0.344977638  0.0015667995
## YearsWithCurrManager       -0.0276562139   0.344078883 -0.0367459053
## Attrition1                 -0.1034811261  -0.159839582  0.0151702125
## BusinessTravel1             0.0086659585  -0.013449947 -0.0084404916
## Department1                 0.0210008789   0.053129698  0.0236420721
## EducationField1            -0.0344008137  -0.041070150 -0.0271816823
## Gender1                     0.0332516974  -0.031858492 -0.0414822051
## JobRole1                    0.0224686645  -0.082090118  0.0080868505
## MaritalStatus1              0.0243599530  -0.075449582  0.0239374266
## OverTime1                   0.0245394811   0.006089285  0.0214311446
##                          NumCompaniesWorked PercentSalaryHike
## ï..Age                          0.299634758       0.003633585
## DailyRate                       0.038153434       0.022703677
## DistanceFromHome               -0.029250804       0.040235377
## Education                       0.126316560      -0.011110941
## EnvironmentSatisfaction         0.012594323      -0.031701195
## HourlyRate                      0.022156883      -0.009061986
## JobInvolvement                  0.015012413      -0.017204572
## JobLevel                        0.142501124      -0.034730492
## JobSatisfaction                -0.055699426       0.020002039
## MonthlyIncome                   0.149515216      -0.027268586
## MonthlyRate                     0.017521353      -0.006429346
## NumCompaniesWorked              1.000000000      -0.010238309
## PercentSalaryHike              -0.010238309       1.000000000
## PerformanceRating              -0.014094873       0.773549996
## RelationshipSatisfaction        0.052733049      -0.040490081
## StockOptionLevel                0.030075475       0.007527748
## TotalWorkingYears               0.237638590      -0.020608488
## TrainingTimesLastYear          -0.066054072      -0.005221012
## WorkLifeBalance                -0.008365685      -0.003279636
## YearsAtCompany                 -0.118421340      -0.035991262
## YearsInCurrentRole             -0.090753934      -0.001520027
## YearsSinceLastPromotion        -0.036813892      -0.022154313
## YearsWithCurrManager           -0.110319155      -0.011985248
## Attrition1                      0.043493739      -0.013478202
## BusinessTravel1                -0.030742984      -0.025726943
## Department1                    -0.035881612      -0.007840161
## EducationField1                -0.008663043      -0.011213502
## Gender1                        -0.039147450       0.002732648
## JobRole1                       -0.056838388       0.003231282
## MaritalStatus1                 -0.035505389       0.012492329
## OverTime1                      -0.020785821      -0.005432827
##                          PerformanceRating RelationshipSatisfaction
## ï..Age                        0.0019038955             0.0535347197
## DailyRate                     0.0004732963             0.0078460310
## DistanceFromHome              0.0271096185             0.0065574746
## Education                    -0.0245387912            -0.0091183767
## EnvironmentSatisfaction      -0.0295479523             0.0076653835
## HourlyRate                   -0.0021716974             0.0013304528
## JobInvolvement               -0.0290713334             0.0342968206
## JobLevel                     -0.0212220821             0.0216415105
## JobSatisfaction               0.0022971971            -0.0124535932
## MonthlyIncome                -0.0171201382             0.0258734361
## MonthlyRate                  -0.0098114285            -0.0040853293
## NumCompaniesWorked           -0.0140948728             0.0527330486
## PercentSalaryHike             0.7735499964            -0.0404900811
## PerformanceRating             1.0000000000            -0.0313514554
## RelationshipSatisfaction     -0.0313514554             1.0000000000
## StockOptionLevel              0.0035064716            -0.0459524907
## TotalWorkingYears             0.0067436679             0.0240542918
## TrainingTimesLastYear        -0.0155788817             0.0024965264
## WorkLifeBalance               0.0025723613             0.0196044057
## YearsAtCompany                0.0034351261             0.0193667869
## YearsInCurrentRole            0.0349862604            -0.0151229149
## YearsSinceLastPromotion       0.0178960661             0.0334925021
## YearsWithCurrManager          0.0228271689            -0.0008674968
## Attrition1                    0.0028887517            -0.0458722789
## BusinessTravel1               0.0016833372             0.0089263034
## Department1                  -0.0246035428            -0.0224144254
## EducationField1              -0.0056142134            -0.0043777110
## Gender1                      -0.0138590184             0.0228683700
## JobRole1                     -0.0244593806            -0.0250233999
## MaritalStatus1                0.0052066260             0.0225490707
## OverTime1                     0.0043691201             0.0484928029
##                          StockOptionLevel TotalWorkingYears
## ï..Age                       0.0375097124       0.680380536
## DailyRate                    0.0421427964       0.014514739
## DistanceFromHome             0.0448719989       0.004628426
## Education                    0.0184222202       0.148279697
## EnvironmentSatisfaction      0.0034321578      -0.002693070
## HourlyRate                   0.0502633991      -0.002333682
## JobInvolvement               0.0215226404      -0.005533182
## JobLevel                     0.0139839105       0.782207805
## JobSatisfaction              0.0106902261      -0.020185073
## MonthlyIncome                0.0054076767       0.772893246
## MonthlyRate                 -0.0343228302       0.026442471
## NumCompaniesWorked           0.0300754751       0.237638590
## PercentSalaryHike            0.0075277478      -0.020608488
## PerformanceRating            0.0035064716       0.006743668
## RelationshipSatisfaction    -0.0459524907       0.024054292
## StockOptionLevel             1.0000000000       0.010135969
## TotalWorkingYears            0.0101359693       1.000000000
## TrainingTimesLastYear        0.0112740696      -0.035661571
## WorkLifeBalance              0.0041287300       0.001007646
## YearsAtCompany               0.0150580080       0.628133155
## YearsInCurrentRole           0.0508178728       0.460364638
## YearsSinceLastPromotion      0.0143521849       0.404857759
## YearsWithCurrManager         0.0246982266       0.459188397
## Attrition1                  -0.1371449189      -0.171063246
## BusinessTravel1             -0.0282569533       0.007972110
## Department1                 -0.0121929144      -0.015761512
## EducationField1             -0.0161847132      -0.027847626
## Gender1                      0.0127157138      -0.046880939
## JobRole1                    -0.0174347521      -0.131447230
## MaritalStatus1              -0.6625772917      -0.077886352
## OverTime1                   -0.0004486707       0.012754266
##                          TrainingTimesLastYear WorkLifeBalance
## ï..Age                            -0.019620819    -0.021490028
## DailyRate                          0.002452543    -0.037848051
## DistanceFromHome                  -0.036942234    -0.026556004
## Education                         -0.025100241     0.009819189
## EnvironmentSatisfaction           -0.019359308     0.027627295
## HourlyRate                        -0.008547685    -0.004607234
## JobInvolvement                    -0.015337826    -0.014616593
## JobLevel                          -0.018190550     0.037817746
## JobSatisfaction                   -0.005779335    -0.019458710
## MonthlyIncome                     -0.021736277     0.030683082
## MonthlyRate                        0.001466881     0.007963158
## NumCompaniesWorked                -0.066054072    -0.008365685
## PercentSalaryHike                 -0.005221012    -0.003279636
## PerformanceRating                 -0.015578882     0.002572361
## RelationshipSatisfaction           0.002496526     0.019604406
## StockOptionLevel                   0.011274070     0.004128730
## TotalWorkingYears                 -0.035661571     0.001007646
## TrainingTimesLastYear              1.000000000     0.028072207
## WorkLifeBalance                    0.028072207     1.000000000
## YearsAtCompany                     0.003568666     0.012089185
## YearsInCurrentRole                -0.005737504     0.049856498
## YearsSinceLastPromotion           -0.002066536     0.008941249
## YearsWithCurrManager              -0.004095526     0.002759440
## Attrition1                        -0.059477799    -0.063939047
## BusinessTravel1                    0.016357219     0.004208799
## Department1                        0.036875066     0.026382525
## EducationField1                    0.049195353     0.041191131
## Gender1                           -0.038786735    -0.002752679
## JobRole1                           0.002694826     0.022249350
## MaritalStatus1                     0.010628607     0.014708294
## OverTime1                         -0.079113372    -0.027091878
##                          YearsAtCompany YearsInCurrentRole
## ï..Age                      0.311308770        0.212901056
## DailyRate                  -0.034054768        0.009932015
## DistanceFromHome            0.009507720        0.018844999
## Education                   0.069113696        0.060235554
## EnvironmentSatisfaction     0.001457549        0.018007460
## HourlyRate                 -0.019581616       -0.024106220
## JobInvolvement             -0.021355427        0.008716963
## JobLevel                    0.534738687        0.389446733
## JobSatisfaction            -0.003802628       -0.002304785
## MonthlyIncome               0.514284826        0.363817667
## MonthlyRate                -0.023655107       -0.012814874
## NumCompaniesWorked         -0.118421340       -0.090753934
## PercentSalaryHike          -0.035991262       -0.001520027
## PerformanceRating           0.003435126        0.034986260
## RelationshipSatisfaction    0.019366787       -0.015122915
## StockOptionLevel            0.015058008        0.050817873
## TotalWorkingYears           0.628133155        0.460364638
## TrainingTimesLastYear       0.003568666       -0.005737504
## WorkLifeBalance             0.012089185        0.049856498
## YearsAtCompany              1.000000000        0.758753737
## YearsInCurrentRole          0.758753737        1.000000000
## YearsSinceLastPromotion     0.618408865        0.548056248
## YearsWithCurrManager        0.769212425        0.714364762
## Attrition1                 -0.134392214       -0.160545004
## BusinessTravel1             0.005212128       -0.005336424
## Department1                 0.022920442        0.056315447
## EducationField1            -0.018692101       -0.010506203
## Gender1                    -0.029747086       -0.041482729
## JobRole1                   -0.074311010       -0.018338077
## MaritalStatus1             -0.059986004       -0.065821900
## OverTime1                  -0.011687120       -0.029758009
##                          YearsSinceLastPromotion YearsWithCurrManager
## ï..Age                               0.216513368         0.2020886024
## DailyRate                           -0.033228985        -0.0263631782
## DistanceFromHome                     0.010028836         0.0144060484
## Education                            0.054254334         0.0690653783
## EnvironmentSatisfaction              0.016193606        -0.0049987226
## HourlyRate                          -0.026715586        -0.0201232002
## JobInvolvement                      -0.024184292         0.0259758079
## JobLevel                             0.353885347         0.3752806078
## JobSatisfaction                     -0.018213568        -0.0276562139
## MonthlyIncome                        0.344977638         0.3440788833
## MonthlyRate                          0.001566800        -0.0367459053
## NumCompaniesWorked                  -0.036813892        -0.1103191554
## PercentSalaryHike                   -0.022154313        -0.0119852485
## PerformanceRating                    0.017896066         0.0228271689
## RelationshipSatisfaction             0.033492502        -0.0008674968
## StockOptionLevel                     0.014352185         0.0246982266
## TotalWorkingYears                    0.404857759         0.4591883971
## TrainingTimesLastYear               -0.002066536        -0.0040955260
## WorkLifeBalance                      0.008941249         0.0027594402
## YearsAtCompany                       0.618408865         0.7692124251
## YearsInCurrentRole                   0.548056248         0.7143647616
## YearsSinceLastPromotion              1.000000000         0.5102236358
## YearsWithCurrManager                 0.510223636         1.0000000000
## Attrition1                          -0.033018775        -0.1561993159
## BusinessTravel1                      0.005222020        -0.0002285118
## Department1                          0.040060967         0.0342824726
## EducationField1                      0.002325656        -0.0041296947
## Gender1                             -0.026984577        -0.0305989093
## JobRole1                            -0.034749921        -0.0339826983
## MaritalStatus1                      -0.030915079        -0.0385700737
## OverTime1                           -0.012238823        -0.0415859987
##                            Attrition1 BusinessTravel1  Department1
## ï..Age                   -0.159205007   -0.0118073324 -0.031882283
## DailyRate                -0.056651992   -0.0155388905  0.007108714
## DistanceFromHome          0.077923583   -0.0096960412  0.017224804
## Education                -0.031372820   -0.0086698401  0.007996422
## EnvironmentSatisfaction  -0.103368978   -0.0113099347 -0.019395271
## HourlyRate               -0.006845550   -0.0041639831 -0.004143708
## JobInvolvement           -0.130015957    0.0292999586 -0.024586062
## JobLevel                 -0.169104751   -0.0116958303  0.101963106
## JobSatisfaction          -0.103481126    0.0086659585  0.021000879
## MonthlyIncome            -0.159839582   -0.0134499467  0.053129698
## MonthlyRate               0.015170213   -0.0084404916  0.023642072
## NumCompaniesWorked        0.043493739   -0.0307429842 -0.035881612
## PercentSalaryHike        -0.013478202   -0.0257269434 -0.007840161
## PerformanceRating         0.002888752    0.0016833372 -0.024603543
## RelationshipSatisfaction -0.045872279    0.0089263034 -0.022414425
## StockOptionLevel         -0.137144919   -0.0282569533 -0.012192914
## TotalWorkingYears        -0.171063246    0.0079721100 -0.015761512
## TrainingTimesLastYear    -0.059477799    0.0163572195  0.036875066
## WorkLifeBalance          -0.063939047    0.0042087993  0.026382525
## YearsAtCompany           -0.134392214    0.0052121277  0.022920442
## YearsInCurrentRole       -0.160545004   -0.0053364236  0.056315447
## YearsSinceLastPromotion  -0.033018775    0.0052220205  0.040060967
## YearsWithCurrManager     -0.156199316   -0.0002285118  0.034282473
## Attrition1                1.000000000    0.1270064832  0.063990596
## BusinessTravel1           0.127006483    1.0000000000 -0.002639604
## Department1               0.063990596   -0.0026396043  1.000000000
## EducationField1           0.026845546   -0.0234890783  0.013719502
## Gender1                   0.029453253   -0.0448955126 -0.041583290
## JobRole1                  0.057389161    0.0112895901  0.704252821
## MaritalStatus1            0.162070235    0.0309149876  0.056073435
## OverTime1                 0.246117994    0.0427515162  0.007480968
##                          EducationField1       Gender1     JobRole1
## ï..Age                      -0.040872848 -0.0363105501 -0.112807055
## DailyRate                    0.037709229 -0.0117161379 -0.003358019
## DistanceFromHome             0.002013453 -0.0018505280  0.003574933
## Education                   -0.039592150 -0.0165468274  0.007721031
## EnvironmentSatisfaction      0.043163491  0.0005083139 -0.014562184
## HourlyRate                  -0.021941219 -0.0004782971 -0.016551533
## JobInvolvement              -0.002655278  0.0179597554  0.007401840
## JobLevel                    -0.044932672 -0.0394031027 -0.066895985
## JobSatisfaction             -0.034400814  0.0332516974  0.022468664
## MonthlyIncome               -0.041070150 -0.0318584918 -0.082090118
## MonthlyRate                 -0.027181682 -0.0414822051  0.008086851
## NumCompaniesWorked          -0.008663043 -0.0391474496 -0.056838388
## PercentSalaryHike           -0.011213502  0.0027326475  0.003231282
## PerformanceRating           -0.005614213 -0.0138590184 -0.024459381
## RelationshipSatisfaction    -0.004377711  0.0228683700 -0.025023400
## StockOptionLevel            -0.016184713  0.0127157138 -0.017434752
## TotalWorkingYears           -0.027847626 -0.0468809395 -0.131447230
## TrainingTimesLastYear        0.049195353 -0.0387867355  0.002694826
## WorkLifeBalance              0.041191131 -0.0027526788  0.022249350
## YearsAtCompany              -0.018692101 -0.0297470859 -0.074311010
## YearsInCurrentRole          -0.010506203 -0.0414827285 -0.018338077
## YearsSinceLastPromotion      0.002325656 -0.0269845772 -0.034749921
## YearsWithCurrManager        -0.004129695 -0.0305989093 -0.033982698
## Attrition1                   0.026845546  0.0294532532  0.057389161
## BusinessTravel1             -0.023489078 -0.0448955126  0.011289590
## Department1                  0.013719502 -0.0415832902  0.704252821
## EducationField1              1.000000000 -0.0025040188  0.027910348
## Gender1                     -0.002504019  1.0000000000 -0.043196964
## JobRole1                     0.027910348 -0.0431969638  1.000000000
## MaritalStatus1               0.014419541 -0.0471825924  0.069833317
## OverTime1                    0.002258600 -0.0419243480  0.043227665
##                          MaritalStatus1     OverTime1
## ï..Age                     -0.095028910  0.0280623571
## DailyRate                  -0.069585641  0.0091349699
## DistanceFromHome           -0.014437031  0.0255136349
## Education                   0.004052654 -0.0203217674
## EnvironmentSatisfaction    -0.003593473  0.0701317268
## HourlyRate                 -0.017860506 -0.0077819744
## JobInvolvement             -0.038497019 -0.0035067106
## JobLevel                   -0.076769478  0.0005440478
## JobSatisfaction             0.024359953  0.0245394811
## MonthlyIncome              -0.075449582  0.0060892854
## MonthlyRate                 0.023937427  0.0214311446
## NumCompaniesWorked         -0.035505389 -0.0207858214
## PercentSalaryHike           0.012492329 -0.0054328267
## PerformanceRating           0.005206626  0.0043691201
## RelationshipSatisfaction    0.022549071  0.0484928029
## StockOptionLevel           -0.662577292 -0.0004486707
## TotalWorkingYears          -0.077886352  0.0127542663
## TrainingTimesLastYear       0.010628607 -0.0791133716
## WorkLifeBalance             0.014708294 -0.0270918785
## YearsAtCompany             -0.059986004 -0.0116871205
## YearsInCurrentRole         -0.065821900 -0.0297580089
## YearsSinceLastPromotion    -0.030915079 -0.0122388226
## YearsWithCurrManager       -0.038570074 -0.0415859987
## Attrition1                  0.162070235  0.2461179942
## BusinessTravel1             0.030914988  0.0427515162
## Department1                 0.056073435  0.0074809676
## EducationField1             0.014419541  0.0022585999
## Gender1                    -0.047182592 -0.0419243480
## JobRole1                    0.069833317  0.0432276651
## MaritalStatus1              1.000000000 -0.0175213816
## OverTime1                  -0.017521382  1.0000000000

Corrgram of variables

library("corrgram", lib.loc="~/R/win-library/3.4")
corrgram(Num,lower.panel=panel.shade,upper.panel=panel.pie,order=TRUE)

Correlation Tests

cor.test (Num[,"Attrition1"], Num[,"BusinessTravel1"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "BusinessTravel1"]
## t = 4.9059, df = 1468, p-value = 1.033e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.07637497 0.17698469
## sample estimates:
##       cor 
## 0.1270065

Finding: Attrition Rate depend on Business Travel

cor.test (Num[,"Attrition1"], Num[,"DailyRate"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "DailyRate"]
## t = -2.1741, df = 1468, p-value = 0.02986
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.107468170 -0.005540584
## sample estimates:
##         cor 
## -0.05665199

Finding: Attrition Rate depend a bit on Daily Rate

cor.test (Num[,"Attrition1"], Num[,"DistanceFromHome"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "DistanceFromHome"]
## t = 2.9947, df = 1468, p-value = 0.002793
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.02690331 0.12853894
## sample estimates:
##        cor 
## 0.07792358

Finding: Attrition Rate depends on DistanceFromHome too

cor.test (Num[,"Attrition1"], Num[,"Education"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "Education"]
## t = -1.2026, df = 1468, p-value = 0.2293
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.08236816  0.01978637
## sample estimates:
##         cor 
## -0.03137282

Finding: Attrition Rate doesnot depend upon Education

cor.test (Num[,"Attrition1"], Num[,"EnvironmentSatisfaction"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "EnvironmentSatisfaction"]
## t = -3.9819, df = 1468, p-value = 7.172e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.15368421 -0.05251908
## sample estimates:
##       cor 
## -0.103369

Finding: Attrition Rate Depend upon Environment Satisfaction

cor.test (Num[,"Attrition1"], Num[,"Gender1"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "Gender1"]
## t = 1.129, df = 1468, p-value = 0.2591
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02170689  0.08045955
## sample estimates:
##        cor 
## 0.02945325

Finding: Attrition Rate does not Depend upon Gender of Employee

cor.test (Num[,"Attrition1"], Num[,"HourlyRate"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "HourlyRate"]
## t = -0.26229, df = 1468, p-value = 0.7931
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.05795272  0.04429741
## sample estimates:
##         cor 
## -0.00684555

Finding: Attrition Rate does not Depend upon HourlyRate

cor.test (Num[,"Attrition1"], Num[,"JobInvolvement"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "JobInvolvement"]
## t = -5.0241, df = 1468, p-value = 5.677e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.17994723 -0.07941641
## sample estimates:
##       cor 
## -0.130016

Finding: Attrition Rate depends on Job Involvement Also

cor.test (Num[,"Attrition1"], Num[,"JobLevel"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "JobLevel"]
## t = -6.5738, df = 1468, p-value = 6.795e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2183444 -0.1190062
## sample estimates:
##        cor 
## -0.1691048

Finding: Attrition Rate depend upon JobLevel also

cor.test (Num[,"Attrition1"], Num[,"JobSatisfaction"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "JobSatisfaction"]
## t = -3.9862, df = 1468, p-value = 7.043e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.15379490 -0.05263213
## sample estimates:
##        cor 
## -0.1034811

Finding: Attrition Rate depend upon JobSatisfaction also

cor.test (Num[,"Attrition1"], Num[,"MaritalStatus1"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "MaritalStatus1"]
## t = 6.2928, df = 1468, p-value = 4.106e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1118698 0.2114456
## sample estimates:
##       cor 
## 0.1620702

Finding: Attrition Rate depend upon MaritalStatus

cor.test (Num[,"Attrition1"], Num[,"MonthlyIncome"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "MonthlyIncome"]
## t = -6.2039, df = 1468, p-value = 7.147e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2092570 -0.1096079
## sample estimates:
##        cor 
## -0.1598396

Finding: Attrition Rate depend upon Monthly Income

cor.test (Num[,"Attrition1"], Num[,"MonthlyRate"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "MonthlyRate"]
## t = 0.58131, df = 1468, p-value = 0.5611
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.03598515  0.06624629
## sample estimates:
##        cor 
## 0.01517021

Finding: Attrition Rate doesnot depend upon Monthly Rate

cor.test (Num[,"Attrition1"], Num[,"NumCompaniesWorked"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "NumCompaniesWorked"]
## t = 1.668, df = 1468, p-value = 0.09553
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.00765073  0.09441125
## sample estimates:
##        cor 
## 0.04349374

Finding: Attrition Rate doesnot depend much on Number of Companies Worked

cor.test (Num[,"Attrition1"], Num[,"OverTime1"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "OverTime1"]
## t = 9.7292, df = 1468, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1974754 0.2935516
## sample estimates:
##      cor 
## 0.246118

Finding: Attrition Rate strongly depend on OverTime

cor.test (Num[,"Attrition1"], Num[,"PercentSalaryHike"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "PercentSalaryHike"]
## t = -0.51646, df = 1468, p-value = 0.6056
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.06456117  0.03767522
## sample estimates:
##        cor 
## -0.0134782

Finding: Attrition Rate doesnot depend upon PercentSalaryHike too according to coorelation test

cor.test (Num[,"Attrition1"], Num[,"PerformanceRating"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "PerformanceRating"]
## t = 0.11068, df = 1468, p-value = 0.9119
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.04824583  0.05400823
## sample estimates:
##         cor 
## 0.002888752

Finding: Attrition Rate totally don’t depend on PerformanceRating and it is also consistent with our Two way contingency Table

cor.test (Num[,"Attrition1"], Num[,"RelationshipSatisfaction"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "RelationshipSatisfaction"]
## t = -1.7594, df = 1468, p-value = 0.07871
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.096772771  0.005267532
## sample estimates:
##         cor 
## -0.04587228

Finding: Attrition Rate doesnot depend significantly on RelationshipSatisfaction

cor.test (Num[,"Attrition1"], Num[,"StockOptionLevel"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "StockOptionLevel"]
## t = -5.3048, df = 1468, p-value = 1.301e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.18696143 -0.08662486
## sample estimates:
##        cor 
## -0.1371449

Finding: Attrition Rate depend upon StockOptionLevel

cor.test (Num[,"Attrition1"], Num[,"TotalWorkingYears"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "TotalWorkingYears"]
## t = -6.6523, df = 1468, p-value = 4.062e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2202643 -0.1209940
## sample estimates:
##        cor 
## -0.1710632

Attrition Rate depend on Total Working Years

cor.test (Num[,"Attrition1"], Num[,"WorkLifeBalance"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "WorkLifeBalance"]
## t = -2.4548, df = 1468, p-value = 0.01421
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.11469157 -0.01285361
## sample estimates:
##         cor 
## -0.06393905

Finding: AttritionRate Depend on WorkLifeBalance

cor.test (Num[,"Attrition1"], Num[,"YearsAtCompany"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "YearsAtCompany"]
## t = -5.1963, df = 1468, p-value = 2.319e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.18425364 -0.08384084
## sample estimates:
##        cor 
## -0.1343922

Finding: Attrition Rate depends on YearsAtCompany

cor.test (Num[,"Attrition1"], Num[,"YearsInCurrentRole"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "YearsInCurrentRole"]
## t = -6.232, df = 1468, p-value = 6.003e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2099491 -0.1103231
## sample estimates:
##       cor 
## -0.160545

Finding: AttritionRate deoend on YearsInCurrentRole too

cor.test (Num[,"Attrition1"], Num[,"YearsSinceLastPromotion"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "YearsSinceLastPromotion"]
## t = -1.2658, df = 1468, p-value = 0.2058
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.08400442  0.01813930
## sample estimates:
##         cor 
## -0.03301878

Finding: Attrition Rate doesnot depend much on YearsSinceLastPromotion

cor.test (Num[,"Attrition1"], Num[,"YearsWithCurrManager"])
## 
##  Pearson's product-moment correlation
## 
## data:  Num[, "Attrition1"] and Num[, "YearsWithCurrManager"]
## t = -6.0591, df = 1468, p-value = 1.737e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2056842 -0.1059177
## sample estimates:
##        cor 
## -0.1561993

Finding: Attrition Rate depend on Years With Current Manager

Conclusion of Analysis:

Our Analysis based on Correlation test shows that Attrition Rate majorly Depends on Business Travel, DailyRate, DistanceFromHome, EnvironmentSatisfaction, Job Involvement, JobLevel, JobSatisfaction, MaritalStatus, Monthly Income, MonthlyRate, OverTime, StockOptionLevel, TotalWorkingYears, WorkLifeBalance, YearsAtCompany, YearsInCurrentRole and YearsWithCurrManager