countPassengers <- nrow(Titanic)
countPassengers
## [1] 889
SurvivorCount <- nrow(subset(Titanic, Survived == "1"))
SurvivorCount
## [1] 340
PercentSurvived <- prop.table(SurvivorCount)*100
PercentSurvived
## [1] 100
SurvivorCountFirstClass <- xtabs(~Pclass + Survived, data = Titanic)
SurvivorCountFirstClass
## Survived
## Pclass 0 1
## 1 80 134
## 2 97 87
## 3 372 119
SurvivorPercentFirstClass <- prop.table(SurvivorCountFirstClass)*100
SurvivorPercentFirstClass
## Survived
## Pclass 0 1
## 1 8.998875 15.073116
## 2 10.911136 9.786277
## 3 41.844769 13.385827
SurvivorCountFirstClassFemale <- ftable(xtabs(~Sex + Survived + Pclass, data = Titanic))
SurvivorCountFirstClassFemale
## Pclass 1 2 3
## Sex Survived
## female 0 3 6 72
## 1 89 70 72
## male 0 77 91 300
## 1 45 17 47
percentageofsurvivorswhowerefemale <- prop.table(xtabs(~Sex + Survived, data = Titanic))*100
percentageofsurvivorswhowerefemale
## Survived
## Sex 0 1
## female 9.111361 25.984252
## male 52.643420 12.260967
percentoffemaleswhosurvived <- prop.table(xtabs(~Sex + Survived, data = Titanic), 1)*100
percentoffemaleswhosurvived
## Survived
## Sex 0 1
## female 25.96154 74.03846
## male 81.10919 18.89081
chisq.test(percentoffemaleswhosurvived)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: percentoffemaleswhosurvived
## X-squared = 58.934, df = 1, p-value = 1.631e-14