countPassengers <- nrow(Titanic)
countPassengers
## [1] 889
SurvivorCount <- nrow(subset(Titanic, Survived == "1"))
SurvivorCount
## [1] 340
PercentSurvived <- prop.table(SurvivorCount)*100
PercentSurvived
## [1] 100
SurvivorCountFirstClass <- xtabs(~Pclass + Survived, data = Titanic)
SurvivorCountFirstClass
##       Survived
## Pclass   0   1
##      1  80 134
##      2  97  87
##      3 372 119
SurvivorPercentFirstClass <- prop.table(SurvivorCountFirstClass)*100
SurvivorPercentFirstClass
##       Survived
## Pclass         0         1
##      1  8.998875 15.073116
##      2 10.911136  9.786277
##      3 41.844769 13.385827
SurvivorCountFirstClassFemale <- ftable(xtabs(~Sex + Survived + Pclass, data = Titanic))
SurvivorCountFirstClassFemale
##                 Pclass   1   2   3
## Sex    Survived                   
## female 0                 3   6  72
##        1                89  70  72
## male   0                77  91 300
##        1                45  17  47
percentageofsurvivorswhowerefemale <- prop.table(xtabs(~Sex + Survived, data = Titanic))*100
percentageofsurvivorswhowerefemale
##         Survived
## Sex              0         1
##   female  9.111361 25.984252
##   male   52.643420 12.260967
percentoffemaleswhosurvived <- prop.table(xtabs(~Sex + Survived, data = Titanic), 1)*100
percentoffemaleswhosurvived
##         Survived
## Sex             0        1
##   female 25.96154 74.03846
##   male   81.10919 18.89081
chisq.test(percentoffemaleswhosurvived)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  percentoffemaleswhosurvived
## X-squared = 58.934, df = 1, p-value = 1.631e-14