Installation

To have access to the quandl data, it is better to declare my API address, for example:

quandl_api_key("enter-your-api-key-here")

Import data (in a tibble form)

Import two time series in levels:

dat01 <- c("FRED/CTFPPPJPA669NRUG", 
            "FRED/CTFPPPBOA669NRUG") %>%
    tq_get(get          = "quandl",
           from         = "1950-01-01",
           to           = "2014-01-01",
           collapse     = "annual")       

Import two time series in growth rates:

dat02 <- c("FRED/CTFPPPJPA669NRUG", 
            "FRED/CTFPPPBOA669NRUG") %>%
    tq_get(get          = "quandl",
           from         = "1950-01-01",
           to           = "2014-01-01",
           transform    = "rdiff",
           collapse     = "annual")    

Wrangle data

Recode the name of the countries and create a factor variable:

dat01$symbol_rec <- recode(dat01$symbol,
               "FRED/CTFPPPJPA669NRUG" = "Japan",
               "FRED/CTFPPPBOA669NRUG" = "Bolivia")
dat01$symbol_rec <- factor(dat01$symbol_rec)
dat02$symbol_rec <- recode(dat02$symbol,
               "FRED/CTFPPPJPA669NRUG" = "Japan",
               "FRED/CTFPPPBOA669NRUG" = "Bolivia")
dat02$symbol_rec <- factor(dat02$symbol_rec)

Visualize levels

fig01 <- dat01 %>%
  ggplot(aes(x = date,
             y = value,
             color = symbol_rec)) +
  geom_line()

Here is an interactive visualization via Plotly

ggplotly(fig01)

Visualize growth rates

fig02 <- dat02 %>%
  ggplot(aes(x = date,
             y = value,
             color = symbol_rec)) +
  geom_line()

Here is an interactive visualization via Plotly

ggplotly(fig02)

Rendering of this documents

The interactive html version of this document can be accessed from: https://rawgit.com/ds777/tidyquant-and-html-widgets/master/tidyquant-and-html-widgets.nb.html

Additional references

LS0tCnRpdGxlOiAiVXNpbmcgVGlkeXF1YW50IGFuZCBQbG90bHk6IEEgU2ltcGxlIEludHJvZHVjdGlvbiIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKIyMgSW5zdGFsbGF0aW9uCmBgYHtyIGluY2x1ZGU9RkFMU0V9CmxpYnJhcnkodGlkeXF1YW50KQpsaWJyYXJ5KHBsb3RseSkKYGBgCgpUbyBoYXZlIGFjY2VzcyB0byB0aGUgcXVhbmRsIGRhdGEsIGl0IGlzIGJldHRlciB0byBkZWNsYXJlIG15IEFQSSBhZGRyZXNzLCBmb3IgZXhhbXBsZToKCmBgYHtyIGV2YWw9RkFMU0V9CnF1YW5kbF9hcGlfa2V5KCJlbnRlci15b3VyLWFwaS1rZXktaGVyZSIpCmBgYAoKIyMgSW1wb3J0IGRhdGEgKGluIGEgdGliYmxlIGZvcm0pCkltcG9ydCB0d28gdGltZSBzZXJpZXMgaW4gbGV2ZWxzOgpgYGB7cn0KZGF0MDEgPC0gYygiRlJFRC9DVEZQUFBKUEE2NjlOUlVHIiwgCiAgICAgICAgICAgICJGUkVEL0NURlBQUEJPQTY2OU5SVUciKSAlPiUKICAgIHRxX2dldChnZXQgICAgICAgICAgPSAicXVhbmRsIiwKICAgICAgICAgICBmcm9tICAgICAgICAgPSAiMTk1MC0wMS0wMSIsCiAgICAgICAgICAgdG8gICAgICAgICAgID0gIjIwMTQtMDEtMDEiLAogICAgICAgICAgIGNvbGxhcHNlICAgICA9ICJhbm51YWwiKSAgICAgICAKYGBgCgpJbXBvcnQgdHdvIHRpbWUgc2VyaWVzIGluIGdyb3d0aCByYXRlczoKYGBge3J9CmRhdDAyIDwtIGMoIkZSRUQvQ1RGUFBQSlBBNjY5TlJVRyIsIAogICAgICAgICAgICAiRlJFRC9DVEZQUFBCT0E2NjlOUlVHIikgJT4lCiAgICB0cV9nZXQoZ2V0ICAgICAgICAgID0gInF1YW5kbCIsCiAgICAgICAgICAgZnJvbSAgICAgICAgID0gIjE5NTAtMDEtMDEiLAogICAgICAgICAgIHRvICAgICAgICAgICA9ICIyMDE0LTAxLTAxIiwKICAgICAgICAgICB0cmFuc2Zvcm0gICAgPSAicmRpZmYiLAogICAgICAgICAgIGNvbGxhcHNlICAgICA9ICJhbm51YWwiKSAgICAKYGBgCgoKCiMjIFdyYW5nbGUgZGF0YQoKUmVjb2RlIHRoZSBuYW1lIG9mIHRoZSBjb3VudHJpZXMgYW5kIGNyZWF0ZSBhIGZhY3RvciB2YXJpYWJsZToKYGBge3J9CmRhdDAxJHN5bWJvbF9yZWMgPC0gcmVjb2RlKGRhdDAxJHN5bWJvbCwKICAgICAgICAgICAgICAgIkZSRUQvQ1RGUFBQSlBBNjY5TlJVRyIgPSAiSmFwYW4iLAogICAgICAgICAgICAgICAiRlJFRC9DVEZQUFBCT0E2NjlOUlVHIiA9ICJCb2xpdmlhIikKZGF0MDEkc3ltYm9sX3JlYyA8LSBmYWN0b3IoZGF0MDEkc3ltYm9sX3JlYykKYGBgCgpgYGB7cn0KZGF0MDIkc3ltYm9sX3JlYyA8LSByZWNvZGUoZGF0MDIkc3ltYm9sLAogICAgICAgICAgICAgICAiRlJFRC9DVEZQUFBKUEE2NjlOUlVHIiA9ICJKYXBhbiIsCiAgICAgICAgICAgICAgICJGUkVEL0NURlBQUEJPQTY2OU5SVUciID0gIkJvbGl2aWEiKQpkYXQwMiRzeW1ib2xfcmVjIDwtIGZhY3RvcihkYXQwMiRzeW1ib2xfcmVjKQpgYGAKCiMjIFZpc3VhbGl6ZSBsZXZlbHMKCmBgYHtyfQpmaWcwMSA8LSBkYXQwMSAlPiUKICBnZ3Bsb3QoYWVzKHggPSBkYXRlLAogICAgICAgICAgICAgeSA9IHZhbHVlLAogICAgICAgICAgICAgY29sb3IgPSBzeW1ib2xfcmVjKSkgKwogIGdlb21fbGluZSgpCmBgYAoKSGVyZSBpcyBhbiBpbnRlcmFjdGl2ZSB2aXN1YWxpemF0aW9uIHZpYSBgUGxvdGx5YAoKYGBge3J9CmdncGxvdGx5KGZpZzAxKQpgYGAKCiMjIFZpc3VhbGl6ZSBncm93dGggcmF0ZXMKCmBgYHtyfQpmaWcwMiA8LSBkYXQwMiAlPiUKICBnZ3Bsb3QoYWVzKHggPSBkYXRlLAogICAgICAgICAgICAgeSA9IHZhbHVlLAogICAgICAgICAgICAgY29sb3IgPSBzeW1ib2xfcmVjKSkgKwogIGdlb21fbGluZSgpCmBgYAoKSGVyZSBpcyBhbiBpbnRlcmFjdGl2ZSB2aXN1YWxpemF0aW9uIHZpYSBgUGxvdGx5YAoKYGBge3J9CmdncGxvdGx5KGZpZzAyKQpgYGAKCiMjIFJlbmRlcmluZyBvZiB0aGlzIGRvY3VtZW50cwpUaGUgaW50ZXJhY3RpdmUgaHRtbCB2ZXJzaW9uIG9mIHRoaXMgZG9jdW1lbnQgY2FuIGJlIGFjY2Vzc2VkIGZyb206IDxodHRwczovL3Jhd2dpdC5jb20vZHM3NzcvdGlkeXF1YW50LWFuZC1odG1sLXdpZGdldHMvbWFzdGVyL3RpZHlxdWFudC1hbmQtaHRtbC13aWRnZXRzLm5iLmh0bWw+CgojIyBBZGRpdGlvbmFsIHJlZmVyZW5jZXMKLSA8aHR0cHM6Ly9idXNpbmVzcy1zY2llbmNlLmdpdGh1Yi5pby90aWR5cXVhbnQvYXJ0aWNsZXMvVFEwMS1jb3JlLWZ1bmN0aW9ucy1pbi10aWR5cXVhbnQuaHRtbD4KLSA8aHR0cHM6Ly9wbG90Lmx5L2dncGxvdDIvZ2V0dGluZy1zdGFydGVkLz4=