library(resampledata)
##
## Attaching package: 'resampledata'
## The following object is masked from 'package:datasets':
##
## Titanic
data(Beerwings)
attach(Beerwings)
head(Beerwings)
names(Beerwings)
## [1] "ID" "Hotwings" "Beer" "Gender"
plot(Hotwings,Beer,ylab="Beer (Fluid Ounces)",main="Beer and Hotwing Consumption")
beerwingmodel <- lm(Hotwings ~ Beer)
beerwingmodel
##
## Call:
## lm(formula = Hotwings ~ Beer)
##
## Coefficients:
## (Intercept) Beer
## 3.6329 0.3168
which(Beer == 30)
## [1] 14 15 18 19 20 27 28
actualwings <- Beerwings[14,2]
thirtyounce <- Beerwings[14,"Beer"]
predictedwings <- coef(beerwingmodel)%*%c(1,thirtyounce)
residual <- actualwings - predictedwings
residual
## [,1]
## [1,] -1.137209
summary(beerwingmodel)
##
## Call:
## lm(formula = Hotwings ~ Beer)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.2364 -1.3603 -0.1868 1.2658 5.9619
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.63293 1.35859 2.674 0.0124 *
## Beer 0.31681 0.04739 6.686 2.95e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.022 on 28 degrees of freedom
## Multiple R-squared: 0.6148, Adjusted R-squared: 0.6011
## F-statistic: 44.7 on 1 and 28 DF, p-value: 2.953e-07
Today I was reminded of the syntax for predicting variables using a matrix. This is something I had forgotten how to do in regards to the % symbol and etc. above. I would be interested in learning other ways in which you can predict data points for the linear regression.