Use the women data (built into R); in particular, use the women’s weight as the response and the height as the predictor.
data(women)
attach(women)
names(women)
## [1] "height" "weight"
women
## height weight
## 1 58 115
## 2 59 117
## 3 60 120
## 4 61 123
## 5 62 126
## 6 63 129
## 7 64 132
## 8 65 135
## 9 66 139
## 10 67 142
## 11 68 146
## 12 69 150
## 13 70 154
## 14 71 159
## 15 72 164
summary(women)
## height weight
## Min. :58.0 Min. :115.0
## 1st Qu.:61.5 1st Qu.:124.5
## Median :65.0 Median :135.0
## Mean :65.0 Mean :136.7
## 3rd Qu.:68.5 3rd Qu.:148.0
## Max. :72.0 Max. :164.0
These call the data and shows the data that is found in women, which is the height and weight of 15 women.
plot(height,weight)
This calls a plot of the women’s height and weight which has a upward, linear trend.
plot(height, weight, ylab = "Weight in pounds",
xlab = "Height in inches",
main = "Height and Weight of Women")
abline(-87.52,3.45)
This adds labels to the graph and makes it look nicer and it shows that the graph isn’t heteroscedasticity
mymod <- lm(weight ~ height)
mymod
##
## Call:
## lm(formula = weight ~ height)
##
## Coefficients:
## (Intercept) height
## -87.52 3.45
summary(mymod)
##
## Call:
## lm(formula = weight ~ height)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7333 -1.1333 -0.3833 0.7417 3.1167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -87.51667 5.93694 -14.74 1.71e-09 ***
## height 3.45000 0.09114 37.85 1.09e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.525 on 13 degrees of freedom
## Multiple R-squared: 0.991, Adjusted R-squared: 0.9903
## F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14
This tells the intercept of the graph, the slope, and the residual standard error.
myresids <- mymod$residuals
myresids
## 1 2 3 4 5 6
## 2.41666667 0.96666667 0.51666667 0.06666667 -0.38333333 -0.83333333
## 7 8 9 10 11 12
## -1.28333333 -1.73333333 -1.18333333 -1.63333333 -1.08333333 -0.53333333
## 13 14 15
## 0.01666667 1.56666667 3.11666667
hist(myresids)
qqnorm(myresids)
qqline(myresids)
The qqline shows that the height and weight of women is normally dist.
sqrt(sum((mymod$residuals)^2)/48)
## [1] 0.7936379