d.df<-read.csv("Data - Deans Dilemma.csv", sep = ",")
summary(d.df$Salary)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0  172800  240000  219078  300000  940000
mytable <- with(d.df, table(Salary))
mytable  # frequencies
## Salary
##      0 120000 132000 144000 150000 156000 162000 168000 177600 180000 
##     79      5      1      2      7      1      2      1      1     24 
## 185000 190000 192000 198000 200000 204000 210000 216000 218000 220000 
##      1      1      1      2      7      4      5      7      2      7 
## 224000 225000 230000 231000 233000 235000 236000 240000 250000 252000 
##      1      1      2      1      1      1      2     28     29      4 
## 255000 260000 263000 264000 265000 267000 268000 270000 275000 276000 
##      1     10      1      2      8      1      1      9      7      3 
## 278000 280000 282000 285000 287000 290000 295000 300000 320000 325000 
##      1      5      1      1      1      3      2     43      2      2 
## 330000 336000 340000 350000 360000 366000 375000 380000 385000 390000 
##      1      3      2      7      9      1      1      1      1      2 
## 393000 400000 411000 420000 425000 426000 428000 450000 476000 480000 
##      1      8      1      1      1      1      1      4      1      1 
## 500000 530000 550000 650000 690000 940000 
##      3      1      1      1      2      1
mytable <- with(d.df, table(Placement))
mytable  # frequencies
## Placement
## Not Placed     Placed 
##         79        312
x=aggregate(d.df$Salary, by=list(d.df$Gender), FUN=mean)
mytable <- xtabs(~ Gender+Salary+Placement, data=d.df)
mytable
## , , Placement = Not Placed
## 
##       Salary
## Gender  0 120000 132000 144000 150000 156000 162000 168000 177600 180000
##      F 30      0      0      0      0      0      0      0      0      0
##      M 49      0      0      0      0      0      0      0      0      0
##       Salary
## Gender 185000 190000 192000 198000 200000 204000 210000 216000 218000
##      F      0      0      0      0      0      0      0      0      0
##      M      0      0      0      0      0      0      0      0      0
##       Salary
## Gender 220000 224000 225000 230000 231000 233000 235000 236000 240000
##      F      0      0      0      0      0      0      0      0      0
##      M      0      0      0      0      0      0      0      0      0
##       Salary
## Gender 250000 252000 255000 260000 263000 264000 265000 267000 268000
##      F      0      0      0      0      0      0      0      0      0
##      M      0      0      0      0      0      0      0      0      0
##       Salary
## Gender 270000 275000 276000 278000 280000 282000 285000 287000 290000
##      F      0      0      0      0      0      0      0      0      0
##      M      0      0      0      0      0      0      0      0      0
##       Salary
## Gender 295000 300000 320000 325000 330000 336000 340000 350000 360000
##      F      0      0      0      0      0      0      0      0      0
##      M      0      0      0      0      0      0      0      0      0
##       Salary
## Gender 366000 375000 380000 385000 390000 393000 400000 411000 420000
##      F      0      0      0      0      0      0      0      0      0
##      M      0      0      0      0      0      0      0      0      0
##       Salary
## Gender 425000 426000 428000 450000 476000 480000 500000 530000 550000
##      F      0      0      0      0      0      0      0      0      0
##      M      0      0      0      0      0      0      0      0      0
##       Salary
## Gender 650000 690000 940000
##      F      0      0      0
##      M      0      0      0
## 
## , , Placement = Placed
## 
##       Salary
## Gender  0 120000 132000 144000 150000 156000 162000 168000 177600 180000
##      F  0      1      0      1      4      0      1      0      1      8
##      M  0      4      1      1      3      1      1      1      0     16
##       Salary
## Gender 185000 190000 192000 198000 200000 204000 210000 216000 218000
##      F      1      1      0      1      4      1      4      4      1
##      M      0      0      1      1      3      3      1      3      1
##       Salary
## Gender 220000 224000 225000 230000 231000 233000 235000 236000 240000
##      F      3      0      0      2      0      0      0      1     10
##      M      4      1      1      0      1      1      1      1     18
##       Salary
## Gender 250000 252000 255000 260000 263000 264000 265000 267000 268000
##      F      9      2      0      4      0      1      0      0      0
##      M     20      2      1      6      1      1      8      1      1
##       Salary
## Gender 270000 275000 276000 278000 280000 282000 285000 287000 290000
##      F      0      1      1      1      1      0      0      1      1
##      M      9      6      2      0      4      1      1      0      2
##       Salary
## Gender 295000 300000 320000 325000 330000 336000 340000 350000 360000
##      F      1     13      1      0      0      1      0      2      2
##      M      1     30      1      2      1      2      2      5      7
##       Salary
## Gender 366000 375000 380000 385000 390000 393000 400000 411000 420000
##      F      1      1      0      0      0      1      1      0      0
##      M      0      0      1      1      2      0      7      1      1
##       Salary
## Gender 425000 426000 428000 450000 476000 480000 500000 530000 550000
##      F      0      0      0      1      0      0      0      0      0
##      M      1      1      1      3      1      1      3      1      1
##       Salary
## Gender 650000 690000 940000
##      F      1      0      0
##      M      0      2      1

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.