getwd()
## [1] "C:/Users/TANAY/Downloads"
deans <- read.csv('Data - Deans Dilemma.csv')
head(deans)
## SlNo Gender Gender.B Percent_SSC Board_SSC Board_CBSE Board_ICSE
## 1 1 M 0 62.00 Others 0 0
## 2 2 M 0 76.33 ICSE 0 1
## 3 3 M 0 72.00 Others 0 0
## 4 4 M 0 60.00 CBSE 1 0
## 5 5 M 0 61.00 CBSE 1 0
## 6 6 M 0 55.00 ICSE 0 1
## Percent_HSC Board_HSC Stream_HSC Percent_Degree Course_Degree
## 1 88.00 Others Commerce 52.00 Science
## 2 75.33 Others Science 75.48 Computer Applications
## 3 78.00 Others Commerce 66.63 Engineering
## 4 63.00 CBSE Arts 58.00 Management
## 5 55.00 ISC Science 54.00 Engineering
## 6 64.00 CBSE Commerce 50.00 Commerce
## Degree_Engg Experience_Yrs Entrance_Test S.TEST Percentile_ET
## 1 0 0 MAT 1 55.0
## 2 0 1 MAT 1 86.5
## 3 1 0 None 0 0.0
## 4 0 0 MAT 1 75.0
## 5 1 1 MAT 1 66.0
## 6 0 0 None 0 0.0
## S.TEST.SCORE Percent_MBA Specialization_MBA Marks_Communication
## 1 55.0 58.80 Marketing & HR 50
## 2 86.5 66.28 Marketing & Finance 69
## 3 0.0 52.91 Marketing & Finance 50
## 4 75.0 57.80 Marketing & Finance 54
## 5 66.0 59.43 Marketing & HR 52
## 6 0.0 56.81 Marketing & Finance 53
## Marks_Projectwork Marks_BOCA Placement Placement_B Salary
## 1 65 74 Placed 1 270000
## 2 70 75 Placed 1 200000
## 3 61 59 Placed 1 240000
## 4 66 62 Placed 1 250000
## 5 65 67 Placed 1 180000
## 6 70 53 Placed 1 300000
placed <- subset(deans,Placement_B==1)
aggregate(Salary~Gender, data=placed, FUN = mean)
## Gender Salary
## 1 F 253068.0
## 2 M 284241.9
t.test(Salary~Gender, data=placed)
##
## Welch Two Sample t-test
##
## data: Salary by Gender
## t = -3.0757, df = 243.03, p-value = 0.00234
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -51138.42 -11209.22
## sample estimates:
## mean in group F mean in group M
## 253068.0 284241.9
t.test(Salary~Gender, data=deans)
##
## Welch Two Sample t-test
##
## data: Salary by Gender
## t = -2.69, df = 278.55, p-value = 0.007577
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -66149.06 -10244.26
## sample estimates:
## mean in group F mean in group M
## 193288.2 231484.8
Average salary of male MBAs who were placed= 284241.9 Average salary of female MBAs who were placed= 253068.0
p-value for placed = 0.00234 p-value for both, placed and non placed= 0.007577
INTERPRETATION OF t-test- In both cases, p<0.05 Thus, we can reject the null hypothesis. Hence, our hypothesis that “The average salary of the male MBAs is higher than the average salary of female MBAs.” is TRUE.