For problems C10–C19, find all solutions to the system of linear equations. Use your favorite computing device to row-reduce the augmented matrices for the systems, and write the solutions as a set, using correct set notation.
A=matrix(c(2,-3,1,7,2,8,-4,5,1,3,-3,0,-5,2,3,4),nrow=4,byrow=TRUE)
b=matrix(c(14,-1,4,-19), nrow=4)
#solve(A,b)
print(A)
## [,1] [,2] [,3] [,4]
## [1,] 2 -3 1 7
## [2,] 2 8 -4 5
## [3,] 1 3 -3 0
## [4,] -5 2 3 4
solve(A,b)
## [,1]
## [1,] 1
## [2,] -3
## [3,] -4
## [4,] 1
require(pracma)
augA=matrix(c(2, -3, 1, 7, 14,2,8,-4,5,-1, 1,3,-3,0,4, -5, 2, 3, 4,-19),nrow=4,byrow=TRUE)
augA
## [,1] [,2] [,3] [,4] [,5]
## [1,] 2 -3 1 7 14
## [2,] 2 8 -4 5 -1
## [3,] 1 3 -3 0 4
## [4,] -5 2 3 4 -19
rref(augA)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 0 1
## [2,] 0 1 0 0 -3
## [3,] 0 0 1 0 -4
## [4,] 0 0 0 1 1
\[ S =\begin{pmatrix} 1 \\ -3 \\ -4 \\ 1\\ \end{pmatrix}\]
require(matlib)
echelon(A,b, verbose = TRUE, fractions = TRUE)
##
## Initial matrix:
## [,1] [,2] [,3] [,4] [,5]
## [1,] 2 -3 1 7 14
## [2,] 2 8 -4 5 -1
## [3,] 1 3 -3 0 4
## [4,] -5 2 3 4 -19
##
## row: 1
##
## exchange rows 1 and 4
## [,1] [,2] [,3] [,4] [,5]
## [1,] -5 2 3 4 -19
## [2,] 2 8 -4 5 -1
## [3,] 1 3 -3 0 4
## [4,] 2 -3 1 7 14
##
## multiply row 1 by -1/5
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 -2/5 -3/5 -4/5 19/5
## [2,] 2 8 -4 5 -1
## [3,] 1 3 -3 0 4
## [4,] 2 -3 1 7 14
##
## multiply row 1 by 2 and subtract from row 2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 -2/5 -3/5 -4/5 19/5
## [2,] 0 44/5 -14/5 33/5 -43/5
## [3,] 1 3 -3 0 4
## [4,] 2 -3 1 7 14
##
## subtract row 1 from row 3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 -2/5 -3/5 -4/5 19/5
## [2,] 0 44/5 -14/5 33/5 -43/5
## [3,] 0 17/5 -12/5 4/5 1/5
## [4,] 2 -3 1 7 14
##
## multiply row 1 by 2 and subtract from row 4
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 -2/5 -3/5 -4/5 19/5
## [2,] 0 44/5 -14/5 33/5 -43/5
## [3,] 0 17/5 -12/5 4/5 1/5
## [4,] 0 -11/5 11/5 43/5 32/5
##
## row: 2
##
## multiply row 2 by 5/44
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 -2/5 -3/5 -4/5 19/5
## [2,] 0 1 -7/22 3/4 -43/44
## [3,] 0 17/5 -12/5 4/5 1/5
## [4,] 0 -11/5 11/5 43/5 32/5
##
## multiply row 2 by 2/5 and add to row 1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 -8/11 -1/2 75/22
## [2,] 0 1 -7/22 3/4 -43/44
## [3,] 0 17/5 -12/5 4/5 1/5
## [4,] 0 -11/5 11/5 43/5 32/5
##
## multiply row 2 by 17/5 and subtract from row 3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 -8/11 -1/2 75/22
## [2,] 0 1 -7/22 3/4 -43/44
## [3,] 0 0 -29/22 -7/4 155/44
## [4,] 0 -11/5 11/5 43/5 32/5
##
## multiply row 2 by 11/5 and add to row 4
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 -8/11 -1/2 75/22
## [2,] 0 1 -7/22 3/4 -43/44
## [3,] 0 0 -29/22 -7/4 155/44
## [4,] 0 0 3/2 41/4 17/4
##
## row: 3
##
## exchange rows 3 and 4
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 -8/11 -1/2 75/22
## [2,] 0 1 -7/22 3/4 -43/44
## [3,] 0 0 3/2 41/4 17/4
## [4,] 0 0 -29/22 -7/4 155/44
##
## multiply row 3 by 2/3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 -8/11 -1/2 75/22
## [2,] 0 1 -7/22 3/4 -43/44
## [3,] 0 0 1 41/6 17/6
## [4,] 0 0 -29/22 -7/4 155/44
##
## multiply row 3 by 8/11 and add to row 1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 295/66 361/66
## [2,] 0 1 -7/22 3/4 -43/44
## [3,] 0 0 1 41/6 17/6
## [4,] 0 0 -29/22 -7/4 155/44
##
## multiply row 3 by 7/22 and add to row 2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 295/66 361/66
## [2,] 0 1 0 193/66 -5/66
## [3,] 0 0 1 41/6 17/6
## [4,] 0 0 -29/22 -7/4 155/44
##
## multiply row 3 by 29/22 and add to row 4
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 295/66 361/66
## [2,] 0 1 0 193/66 -5/66
## [3,] 0 0 1 41/6 17/6
## [4,] 0 0 0 479/66 479/66
##
## row: 4
##
## multiply row 4 by 66/479
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 295/66 361/66
## [2,] 0 1 0 193/66 -5/66
## [3,] 0 0 1 41/6 17/6
## [4,] 0 0 0 1 1
##
## multiply row 4 by 295/66 and subtract from row 1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 0 1
## [2,] 0 1 0 193/66 -5/66
## [3,] 0 0 1 41/6 17/6
## [4,] 0 0 0 1 1
##
## multiply row 4 by 193/66 and subtract from row 2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 0 1
## [2,] 0 1 0 0 -3
## [3,] 0 0 1 41/6 17/6
## [4,] 0 0 0 1 1
##
## multiply row 4 by 41/6 and subtract from row 3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 0 1
## [2,] 0 1 0 0 -3
## [3,] 0 0 1 0 -4
## [4,] 0 0 0 1 1