Exercise 8.4 Refer to Homework #5, second question for a description of the Vietnam data set in vcdExtra. The goal here is to fit models for the polytomous response variable in relation to year and sex.
data("Vietnam", package = "vcdExtra")
head(Vietnam)
## sex year response Freq
## 1 Female 1 A 13
## 2 Female 1 B 19
## 3 Female 1 C 40
## 4 Female 1 D 5
## 5 Female 2 A 5
## 6 Female 2 B 9
Vietnam$response = ordered(Vietnam$response)
library(VGAM)
## Loading required package: stats4
## Loading required package: splines
vietpo = vglm(response ~ year +sex , family=cumulative(parallel = TRUE),data = Vietnam)
vietpo
##
## Call:
## vglm(formula = response ~ year + sex, family = cumulative(parallel = TRUE),
## data = Vietnam)
##
##
## Coefficients:
## (Intercept):1 (Intercept):2 (Intercept):3 year sexMale
## -1.098612e+00 -6.879800e-16 1.098612e+00 -8.881784e-17 1.256074e-16
##
## Degrees of Freedom: 120 Total; 115 Residual
## Residual deviance: 110.9035
## Log-likelihood: -55.45177
vietnpo = vglm(response ~ year +sex , family=cumulative(parallel = FALSE),data = Vietnam)
vietnpo
##
## Call:
## vglm(formula = response ~ year + sex, family = cumulative(parallel = FALSE),
## data = Vietnam)
##
##
## Coefficients:
## (Intercept):1 (Intercept):2 (Intercept):3 year:1 year:2
## -1.098612e+00 -6.879800e-16 1.098612e+00 4.634791e-16 6.326856e-17
## year:3 sexMale:1 sexMale:2 sexMale:3
## 8.599751e-17 -3.918388e-16 -1.133916e-15 -8.918715e-16
##
## Degrees of Freedom: 120 Total; 111 Residual
## Residual deviance: 110.9035
## Log-likelihood: -55.45177
coef(vietpo ,matrix=TRUE)
## logit(P[Y<=1]) logit(P[Y<=2]) logit(P[Y<=3])
## (Intercept) -1.098612e+00 -6.879800e-16 1.098612e+00
## year -8.881784e-17 -8.881784e-17 -8.881784e-17
## sexMale 1.256074e-16 1.256074e-16 1.256074e-16
coef(vietnpo ,matrix=TRUE)
## logit(P[Y<=1]) logit(P[Y<=2]) logit(P[Y<=3])
## (Intercept) -1.098612e+00 -6.879800e-16 1.098612e+00
## year 4.634791e-16 6.326856e-17 8.599751e-17
## sexMale -3.918388e-16 -1.133916e-15 -8.918715e-16
library(nnet)
viet.multinom = multinom(response ~ year +sex ,data = Vietnam, Hess= TRUE)
## # weights: 16 (9 variable)
## initial value 55.451774
## final value 55.451774
## converged
summary(viet.multinom )
## Call:
## multinom(formula = response ~ year + sex, data = Vietnam, Hess = TRUE)
##
## Coefficients:
## (Intercept) year sexMale
## B 0 0 0
## C 0 0 0
## D 0 0 0
##
## Std. Errors:
## (Intercept) year sexMale
## B 1.140175 0.3162278 0.8944272
## C 1.140175 0.3162278 0.8944272
## D 1.140175 0.3162278 0.8944272
##
## Residual Deviance: 110.9035
## AIC: 128.9035
library(car)
##
## Attaching package: 'car'
## The following object is masked from 'package:VGAM':
##
## logit
Anova(viet.multinom)
## Analysis of Deviance Table (Type II tests)
##
## Response: response
## LR Chisq Df Pr(>Chisq)
## year 0 3 1
## sex 0 3 1