In the previous few pages, you recreated some of the displays and preliminary analysis of Arbuthnot’s baptism data. Your assignment involves repeating these steps, but for present day birth records in the United States. Load up the present day data with the following command.
source(“http://www.openintro.org/stat/data/present.R”) The data are stored in a data frame called present.
source("http://www.openintro.org/stat/data/present.R")
source("http://www.openintro.org/stat/data/arbuthnot.R")
present
## year boys girls
## 1 1940 1211684 1148715
## 2 1941 1289734 1223693
## 3 1942 1444365 1364631
## 4 1943 1508959 1427901
## 5 1944 1435301 1359499
## 6 1945 1404587 1330869
## 7 1946 1691220 1597452
## 8 1947 1899876 1800064
## 9 1948 1813852 1721216
## 10 1949 1826352 1733177
## 11 1950 1823555 1730594
## 12 1951 1923020 1827830
## 13 1952 1971262 1875724
## 14 1953 2001798 1900322
## 15 1954 2059068 1958294
## 16 1955 2073719 1973576
## 17 1956 2133588 2029502
## 18 1957 2179960 2074824
## 19 1958 2152546 2051266
## 20 1959 2173638 2071158
## 21 1960 2179708 2078142
## 22 1961 2186274 2082052
## 23 1962 2132466 2034896
## 24 1963 2101632 1996388
## 25 1964 2060162 1967328
## 26 1965 1927054 1833304
## 27 1966 1845862 1760412
## 28 1967 1803388 1717571
## 29 1968 1796326 1705238
## 30 1969 1846572 1753634
## 31 1970 1915378 1816008
## 32 1971 1822910 1733060
## 33 1972 1669927 1588484
## 34 1973 1608326 1528639
## 35 1974 1622114 1537844
## 36 1975 1613135 1531063
## 37 1976 1624436 1543352
## 38 1977 1705916 1620716
## 39 1978 1709394 1623885
## 40 1979 1791267 1703131
## 41 1980 1852616 1759642
## 42 1981 1860272 1768966
## 43 1982 1885676 1794861
## 44 1983 1865553 1773380
## 45 1984 1879490 1789651
## 46 1985 1927983 1832578
## 47 1986 1924868 1831679
## 48 1987 1951153 1858241
## 49 1988 2002424 1907086
## 50 1989 2069490 1971468
## 51 1990 2129495 2028717
## 52 1991 2101518 2009389
## 53 1992 2082097 1982917
## 54 1993 2048861 1951379
## 55 1994 2022589 1930178
## 56 1995 1996355 1903234
## 57 1996 1990480 1901014
## 58 1997 1985596 1895298
## 59 1998 2016205 1925348
## 60 1999 2026854 1932563
## 61 2000 2076969 1981845
## 62 2001 2057922 1968011
## 63 2002 2057979 1963747
dim(present)
## [1] 63 3
names(present)
## [1] "year" "boys" "girls"
As you one can clearly see, the present data count for boys and girls are not on the same scale as arbuthnot’s data. The present counts are in the millions while arbuthnot’s is in the thousands only.
summary(present)
## year boys girls
## Min. :1940 Min. :1211684 Min. :1148715
## 1st Qu.:1956 1st Qu.:1799857 1st Qu.:1711405
## Median :1971 Median :1924868 Median :1831679
## Mean :1971 Mean :1885600 Mean :1793915
## 3rd Qu.:1986 3rd Qu.:2058524 3rd Qu.:1965538
## Max. :2002 Max. :2186274 Max. :2082052
summary(arbuthnot)
## year boys girls
## Min. :1629 Min. :2890 Min. :2722
## 1st Qu.:1649 1st Qu.:4759 1st Qu.:4457
## Median :1670 Median :6073 Median :5718
## Mean :1670 Mean :5907 Mean :5535
## 3rd Qu.:1690 3rd Qu.:7576 3rd Qu.:7150
## Max. :1710 Max. :8426 Max. :7779
Yes. Based on the plot below, there are more boys than girls on the dataset from 1940 to 2002.
present$boyGirlRatio <- (present$boys / present$girls)
plot(x = present$year, y = present$boyGirlRatio)
Based on the result below, 1961 is the year that has the most total number of births in the dataset.
present$totalBirth <- present$boys + present$girls
maxTotal <- max(present$totalBirth)
present[present$totalBirth == maxTotal,]
## year boys girls boyGirlRatio totalBirth
## 22 1961 2186274 2082052 1.050057 4268326
arbuthnot
## year boys girls
## 1 1629 5218 4683
## 2 1630 4858 4457
## 3 1631 4422 4102
## 4 1632 4994 4590
## 5 1633 5158 4839
## 6 1634 5035 4820
## 7 1635 5106 4928
## 8 1636 4917 4605
## 9 1637 4703 4457
## 10 1638 5359 4952
## 11 1639 5366 4784
## 12 1640 5518 5332
## 13 1641 5470 5200
## 14 1642 5460 4910
## 15 1643 4793 4617
## 16 1644 4107 3997
## 17 1645 4047 3919
## 18 1646 3768 3395
## 19 1647 3796 3536
## 20 1648 3363 3181
## 21 1649 3079 2746
## 22 1650 2890 2722
## 23 1651 3231 2840
## 24 1652 3220 2908
## 25 1653 3196 2959
## 26 1654 3441 3179
## 27 1655 3655 3349
## 28 1656 3668 3382
## 29 1657 3396 3289
## 30 1658 3157 3013
## 31 1659 3209 2781
## 32 1660 3724 3247
## 33 1661 4748 4107
## 34 1662 5216 4803
## 35 1663 5411 4881
## 36 1664 6041 5681
## 37 1665 5114 4858
## 38 1666 4678 4319
## 39 1667 5616 5322
## 40 1668 6073 5560
## 41 1669 6506 5829
## 42 1670 6278 5719
## 43 1671 6449 6061
## 44 1672 6443 6120
## 45 1673 6073 5822
## 46 1674 6113 5738
## 47 1675 6058 5717
## 48 1676 6552 5847
## 49 1677 6423 6203
## 50 1678 6568 6033
## 51 1679 6247 6041
## 52 1680 6548 6299
## 53 1681 6822 6533
## 54 1682 6909 6744
## 55 1683 7577 7158
## 56 1684 7575 7127
## 57 1685 7484 7246
## 58 1686 7575 7119
## 59 1687 7737 7214
## 60 1688 7487 7101
## 61 1689 7604 7167
## 62 1690 7909 7302
## 63 1691 7662 7392
## 64 1692 7602 7316
## 65 1693 7676 7483
## 66 1694 6985 6647
## 67 1695 7263 6713
## 68 1696 7632 7229
## 69 1697 8062 7767
## 70 1698 8426 7626
## 71 1699 7911 7452
## 72 1700 7578 7061
## 73 1701 8102 7514
## 74 1702 8031 7656
## 75 1703 7765 7683
## 76 1704 6113 5738
## 77 1705 8366 7779
## 78 1706 7952 7417
## 79 1707 8379 7687
## 80 1708 8239 7623
## 81 1709 7840 7380
## 82 1710 7640 7288
dim(arbuthnot)
## [1] 82 3
names(arbuthnot)
## [1] "year" "boys" "girls"
sum(arbuthnot$girls)
## [1] 453841
How would you describe it?
Since around 1660, the number of girls baptized had been steadily increasing. Before then, there was a drop in the number of girls baptized.
plot(x = arbuthnot$year, y = arbuthnot$girls)
plot(x = arbuthnot$year, y = arbuthnot$girls, type = "l")
plot(x=arbuthnot$year, y=arbuthnot$boys + arbuthnot$girls, type = "l")
arbuthnot$boyProportion <- arbuthnot$boys / (arbuthnot$boys + arbuthnot$girls)
arbuthnot
## year boys girls boyProportion
## 1 1629 5218 4683 0.5270175
## 2 1630 4858 4457 0.5215244
## 3 1631 4422 4102 0.5187705
## 4 1632 4994 4590 0.5210768
## 5 1633 5158 4839 0.5159548
## 6 1634 5035 4820 0.5109082
## 7 1635 5106 4928 0.5088698
## 8 1636 4917 4605 0.5163831
## 9 1637 4703 4457 0.5134279
## 10 1638 5359 4952 0.5197362
## 11 1639 5366 4784 0.5286700
## 12 1640 5518 5332 0.5085714
## 13 1641 5470 5200 0.5126523
## 14 1642 5460 4910 0.5265188
## 15 1643 4793 4617 0.5093518
## 16 1644 4107 3997 0.5067868
## 17 1645 4047 3919 0.5080341
## 18 1646 3768 3395 0.5260366
## 19 1647 3796 3536 0.5177305
## 20 1648 3363 3181 0.5139059
## 21 1649 3079 2746 0.5285837
## 22 1650 2890 2722 0.5149679
## 23 1651 3231 2840 0.5322023
## 24 1652 3220 2908 0.5254569
## 25 1653 3196 2959 0.5192526
## 26 1654 3441 3179 0.5197885
## 27 1655 3655 3349 0.5218447
## 28 1656 3668 3382 0.5202837
## 29 1657 3396 3289 0.5080030
## 30 1658 3157 3013 0.5116694
## 31 1659 3209 2781 0.5357262
## 32 1660 3724 3247 0.5342132
## 33 1661 4748 4107 0.5361942
## 34 1662 5216 4803 0.5206108
## 35 1663 5411 4881 0.5257482
## 36 1664 6041 5681 0.5153557
## 37 1665 5114 4858 0.5128359
## 38 1666 4678 4319 0.5199511
## 39 1667 5616 5322 0.5134394
## 40 1668 6073 5560 0.5220493
## 41 1669 6506 5829 0.5274422
## 42 1670 6278 5719 0.5232975
## 43 1671 6449 6061 0.5155076
## 44 1672 6443 6120 0.5128552
## 45 1673 6073 5822 0.5105507
## 46 1674 6113 5738 0.5158214
## 47 1675 6058 5717 0.5144798
## 48 1676 6552 5847 0.5284297
## 49 1677 6423 6203 0.5087122
## 50 1678 6568 6033 0.5212285
## 51 1679 6247 6041 0.5083822
## 52 1680 6548 6299 0.5096910
## 53 1681 6822 6533 0.5108199
## 54 1682 6909 6744 0.5060426
## 55 1683 7577 7158 0.5142178
## 56 1684 7575 7127 0.5152360
## 57 1685 7484 7246 0.5080788
## 58 1686 7575 7119 0.5155165
## 59 1687 7737 7214 0.5174905
## 60 1688 7487 7101 0.5132301
## 61 1689 7604 7167 0.5147925
## 62 1690 7909 7302 0.5199527
## 63 1691 7662 7392 0.5089677
## 64 1692 7602 7316 0.5095857
## 65 1693 7676 7483 0.5063659
## 66 1694 6985 6647 0.5123973
## 67 1695 7263 6713 0.5196766
## 68 1696 7632 7229 0.5135590
## 69 1697 8062 7767 0.5093183
## 70 1698 8426 7626 0.5249190
## 71 1699 7911 7452 0.5149385
## 72 1700 7578 7061 0.5176583
## 73 1701 8102 7514 0.5188268
## 74 1702 8031 7656 0.5119526
## 75 1703 7765 7683 0.5026541
## 76 1704 6113 5738 0.5158214
## 77 1705 8366 7779 0.5181790
## 78 1706 7952 7417 0.5174052
## 79 1707 8379 7687 0.5215362
## 80 1708 8239 7623 0.5194175
## 81 1709 7840 7380 0.5151117
## 82 1710 7640 7288 0.5117899
The proportion of boys baptized fluctuates between 0.50 and 0.53.
plot(x=arbuthnot$year, y=arbuthnot$boyProportion, type="l")
For all the years, there were more boys baptized than girls.
arbuthnot$isMoreBoys <- arbuthnot$boys > arbuthnot$girls
arbuthnot
## year boys girls boyProportion isMoreBoys
## 1 1629 5218 4683 0.5270175 TRUE
## 2 1630 4858 4457 0.5215244 TRUE
## 3 1631 4422 4102 0.5187705 TRUE
## 4 1632 4994 4590 0.5210768 TRUE
## 5 1633 5158 4839 0.5159548 TRUE
## 6 1634 5035 4820 0.5109082 TRUE
## 7 1635 5106 4928 0.5088698 TRUE
## 8 1636 4917 4605 0.5163831 TRUE
## 9 1637 4703 4457 0.5134279 TRUE
## 10 1638 5359 4952 0.5197362 TRUE
## 11 1639 5366 4784 0.5286700 TRUE
## 12 1640 5518 5332 0.5085714 TRUE
## 13 1641 5470 5200 0.5126523 TRUE
## 14 1642 5460 4910 0.5265188 TRUE
## 15 1643 4793 4617 0.5093518 TRUE
## 16 1644 4107 3997 0.5067868 TRUE
## 17 1645 4047 3919 0.5080341 TRUE
## 18 1646 3768 3395 0.5260366 TRUE
## 19 1647 3796 3536 0.5177305 TRUE
## 20 1648 3363 3181 0.5139059 TRUE
## 21 1649 3079 2746 0.5285837 TRUE
## 22 1650 2890 2722 0.5149679 TRUE
## 23 1651 3231 2840 0.5322023 TRUE
## 24 1652 3220 2908 0.5254569 TRUE
## 25 1653 3196 2959 0.5192526 TRUE
## 26 1654 3441 3179 0.5197885 TRUE
## 27 1655 3655 3349 0.5218447 TRUE
## 28 1656 3668 3382 0.5202837 TRUE
## 29 1657 3396 3289 0.5080030 TRUE
## 30 1658 3157 3013 0.5116694 TRUE
## 31 1659 3209 2781 0.5357262 TRUE
## 32 1660 3724 3247 0.5342132 TRUE
## 33 1661 4748 4107 0.5361942 TRUE
## 34 1662 5216 4803 0.5206108 TRUE
## 35 1663 5411 4881 0.5257482 TRUE
## 36 1664 6041 5681 0.5153557 TRUE
## 37 1665 5114 4858 0.5128359 TRUE
## 38 1666 4678 4319 0.5199511 TRUE
## 39 1667 5616 5322 0.5134394 TRUE
## 40 1668 6073 5560 0.5220493 TRUE
## 41 1669 6506 5829 0.5274422 TRUE
## 42 1670 6278 5719 0.5232975 TRUE
## 43 1671 6449 6061 0.5155076 TRUE
## 44 1672 6443 6120 0.5128552 TRUE
## 45 1673 6073 5822 0.5105507 TRUE
## 46 1674 6113 5738 0.5158214 TRUE
## 47 1675 6058 5717 0.5144798 TRUE
## 48 1676 6552 5847 0.5284297 TRUE
## 49 1677 6423 6203 0.5087122 TRUE
## 50 1678 6568 6033 0.5212285 TRUE
## 51 1679 6247 6041 0.5083822 TRUE
## 52 1680 6548 6299 0.5096910 TRUE
## 53 1681 6822 6533 0.5108199 TRUE
## 54 1682 6909 6744 0.5060426 TRUE
## 55 1683 7577 7158 0.5142178 TRUE
## 56 1684 7575 7127 0.5152360 TRUE
## 57 1685 7484 7246 0.5080788 TRUE
## 58 1686 7575 7119 0.5155165 TRUE
## 59 1687 7737 7214 0.5174905 TRUE
## 60 1688 7487 7101 0.5132301 TRUE
## 61 1689 7604 7167 0.5147925 TRUE
## 62 1690 7909 7302 0.5199527 TRUE
## 63 1691 7662 7392 0.5089677 TRUE
## 64 1692 7602 7316 0.5095857 TRUE
## 65 1693 7676 7483 0.5063659 TRUE
## 66 1694 6985 6647 0.5123973 TRUE
## 67 1695 7263 6713 0.5196766 TRUE
## 68 1696 7632 7229 0.5135590 TRUE
## 69 1697 8062 7767 0.5093183 TRUE
## 70 1698 8426 7626 0.5249190 TRUE
## 71 1699 7911 7452 0.5149385 TRUE
## 72 1700 7578 7061 0.5176583 TRUE
## 73 1701 8102 7514 0.5188268 TRUE
## 74 1702 8031 7656 0.5119526 TRUE
## 75 1703 7765 7683 0.5026541 TRUE
## 76 1704 6113 5738 0.5158214 TRUE
## 77 1705 8366 7779 0.5181790 TRUE
## 78 1706 7952 7417 0.5174052 TRUE
## 79 1707 8379 7687 0.5215362 TRUE
## 80 1708 8239 7623 0.5194175 TRUE
## 81 1709 7840 7380 0.5151117 TRUE
## 82 1710 7640 7288 0.5117899 TRUE