store.df <- read.csv(paste("Data - Deans Dilemma.csv" , sep = ""))
library(psych)
describe(store.df)
##                     vars   n      mean        sd    median   trimmed
## SlNo                   1 391    196.00    113.02    196.00    196.00
## Gender*                2 391      1.68      0.47      2.00      1.72
## Gender.B               3 391      0.32      0.47      0.00      0.28
## Percent_SSC            4 391     64.65     10.96     64.50     64.76
## Board_SSC*             5 391      2.23      0.87      3.00      2.28
## Board_CBSE             6 391      0.29      0.45      0.00      0.24
## Board_ICSE             7 391      0.20      0.40      0.00      0.12
## Percent_HSC            8 391     63.80     11.42     63.00     63.34
## Board_HSC*             9 391      2.39      0.85      3.00      2.48
## Stream_HSC*           10 391      2.34      0.56      2.00      2.36
## Percent_Degree        11 391     62.98      8.92     63.00     62.91
## Course_Degree*        12 391      3.85      1.61      4.00      3.81
## Degree_Engg           13 391      0.09      0.29      0.00      0.00
## Experience_Yrs        14 391      0.48      0.67      0.00      0.36
## Entrance_Test*        15 391      5.85      1.35      6.00      6.08
## S.TEST                16 391      0.83      0.38      1.00      0.91
## Percentile_ET         17 391     54.93     31.17     62.00     56.87
## S.TEST.SCORE          18 391     54.93     31.17     62.00     56.87
## Percent_MBA           19 391     61.67      5.85     61.01     61.45
## Specialization_MBA*   20 391      1.47      0.56      1.00      1.42
## Marks_Communication   21 391     60.54      8.82     58.00     59.68
## Marks_Projectwork     22 391     68.36      7.15     69.00     68.60
## Marks_BOCA            23 391     64.38      9.58     63.00     64.08
## Placement*            24 391      1.80      0.40      2.00      1.87
## Placement_B           25 391      0.80      0.40      1.00      0.87
## Salary                26 391 219078.26 138311.65 240000.00 217011.50
##                          mad   min       max     range  skew kurtosis
## SlNo                  145.29  1.00    391.00    390.00  0.00    -1.21
## Gender*                 0.00  1.00      2.00      1.00 -0.75    -1.45
## Gender.B                0.00  0.00      1.00      1.00  0.75    -1.45
## Percent_SSC            12.60 37.00     87.20     50.20 -0.06    -0.72
## Board_SSC*              0.00  1.00      3.00      2.00 -0.45    -1.53
## Board_CBSE              0.00  0.00      1.00      1.00  0.93    -1.14
## Board_ICSE              0.00  0.00      1.00      1.00  1.52     0.31
## Percent_HSC            13.34 40.00     94.70     54.70  0.29    -0.67
## Board_HSC*              0.00  1.00      3.00      2.00 -0.83    -1.13
## Stream_HSC*             0.00  1.00      3.00      2.00 -0.12    -0.72
## Percent_Degree          8.90 35.00     89.00     54.00  0.05     0.24
## Course_Degree*          1.48  1.00      7.00      6.00  0.00    -1.08
## Degree_Engg             0.00  0.00      1.00      1.00  2.76     5.63
## Experience_Yrs          0.00  0.00      3.00      3.00  1.27     1.17
## Entrance_Test*          0.00  1.00      9.00      8.00 -2.52     7.04
## S.TEST                  0.00  0.00      1.00      1.00 -1.74     1.02
## Percentile_ET          25.20  0.00     98.69     98.69 -0.74    -0.69
## S.TEST.SCORE           25.20  0.00     98.69     98.69 -0.74    -0.69
## Percent_MBA             6.39 50.83     77.89     27.06  0.34    -0.52
## Specialization_MBA*     0.00  1.00      3.00      2.00  0.70    -0.56
## Marks_Communication     8.90 50.00     88.00     38.00  0.74    -0.25
## Marks_Projectwork       7.41 50.00     87.00     37.00 -0.26    -0.27
## Marks_BOCA             11.86 50.00     96.00     46.00  0.29    -0.85
## Placement*              0.00  1.00      2.00      1.00 -1.48     0.19
## Placement_B             0.00  0.00      1.00      1.00 -1.48     0.19
## Salary              88956.00  0.00 940000.00 940000.00  0.24     1.74
##                          se
## SlNo                   5.72
## Gender*                0.02
## Gender.B               0.02
## Percent_SSC            0.55
## Board_SSC*             0.04
## Board_CBSE             0.02
## Board_ICSE             0.02
## Percent_HSC            0.58
## Board_HSC*             0.04
## Stream_HSC*            0.03
## Percent_Degree         0.45
## Course_Degree*         0.08
## Degree_Engg            0.01
## Experience_Yrs         0.03
## Entrance_Test*         0.07
## S.TEST                 0.02
## Percentile_ET          1.58
## S.TEST.SCORE           1.58
## Percent_MBA            0.30
## Specialization_MBA*    0.03
## Marks_Communication    0.45
## Marks_Projectwork      0.36
## Marks_BOCA             0.48
## Placement*             0.02
## Placement_B            0.02
## Salary              6994.72
store.df <- read.csv(paste("Data - Deans Dilemma.csv" , sep = ""))
median(store.df$Salary)
## [1] 240000
percent <- length(store.df$Placement[store.df$Placement == "Placed"]) / length(store.df$Placement) * 100
options(digits = 4)
percent
## [1] 79.8
placed <- subset(store.df, Placement == "Placed" , select = c(Percent_MBA , Gender , Salary))
placed
##     Percent_MBA Gender Salary
## 1         58.80      M 270000
## 2         66.28      M 200000
## 3         52.91      M 240000
## 4         57.80      M 250000
## 5         59.43      M 180000
## 6         56.81      M 300000
## 7         59.80      F 260000
## 8         57.23      M 235000
## 9         55.50      M 425000
## 10        63.83      F 240000
## 12        54.01      M 250000
## 13        51.58      M 180000
## 14        66.92      M 428000
## 15        58.21      M 450000
## 17        58.94      M 300000
## 18        54.78      M 240000
## 19        62.14      M 252000
## 21        63.26      M 280000
## 22        61.29      M 231000
## 23        62.51      M 224000
## 24        52.21      M 120000
## 25        60.85      M 260000
## 26        60.77      M 300000
## 27        51.75      M 120000
## 28        58.56      M 120000
## 29        63.70      M 250000
## 30        65.04      F 180000
## 31        68.63      F 218000
## 32        57.68      M 360000
## 33        54.96      M 150000
## 34        64.19      F 250000
## 35        64.66      F 200000
## 36        62.54      M 300000
## 37        52.41      M 330000
## 38        56.61      M 265000
## 39        61.83      M 340000
## 41        64.08      F 177600
## 44        77.89      M 236000
## 45        56.70      M 265000
## 46        57.74      M 200000
## 47        69.06      F 393000
## 48        68.81      F 360000
## 49        63.62      F 300000
## 50        53.42      M 250000
## 51        74.01      M 360000
## 52        65.33      F 180000
## 53        62.80      F 180000
## 54        58.53      M 270000
## 55        57.55      M 240000
## 56        60.76      M 300000
## 57        57.69      M 265000
## 58        64.15      M 350000
## 60        56.70      F 250000
## 61        58.32      F 180000
## 62        62.21      F 278000
## 63        57.61      M 150000
## 65        72.78      F 260000
## 66        62.77      M 180000
## 67        62.74      F 300000
## 69        68.85      M 400000
## 70        55.47      F 320000
## 71        56.86      F 240000
## 72        62.56      M 411000
## 73        66.72      F 287000
## 74        69.76      F 198000
## 76        62.90      M 300000
## 77        69.70      F 200000
## 78        66.53      F 180000
## 80        54.55      M 204000
## 81        62.46      M 250000
## 83        62.98      F 200000
## 84        62.27      M 275000
## 85        62.65      M 192000
## 86        57.83      F 240000
## 87        60.91      F 300000
## 90        71.04      M 450000
## 91        65.56      F 216000
## 92        52.71      M 220000
## 93        55.10      M 216000
## 95        67.31      M 300000
## 96        66.88      M 240000
## 97        63.59      M 360000
## 99        57.99      M 268000
## 101       56.66      M 265000
## 102       57.24      M 260000
## 103       67.53      M 240000
## 104       62.48      M 300000
## 105       59.69      F 240000
## 106       52.82      M 180000
## 107       64.75      M 240000
## 108       57.76      M 400000
## 110       52.43      M 180000
## 111       76.72      M 250000
## 113       69.35      F 295000
## 114       59.50      M 180000
## 115       62.89      F 300000
## 116       58.78      M 240000
## 117       57.10      M 120000
## 118       59.10      M 250000
## 119       58.46      M 275000
## 120       60.99      M 275000
## 121       59.24      F 150000
## 122       68.07      M 275000
## 123       60.03      M 300000
## 124       58.75      M 240000
## 125       69.81      M 336000
## 126       65.45      M 360000
## 127       62.40      M 280000
## 129       60.43      M 325000
## 130       60.76      M 204000
## 131       66.94      M 240000
## 132       68.53      M 240000
## 133       61.41      F 336000
## 134       59.75      M 218000
## 135       55.02      M 216000
## 136       67.20      M 336000
## 137       67.00      F 190000
## 138       64.27      F 230000
## 139       51.24      M 390000
## 140       57.65      M 500000
## 141       59.42      M 270000
## 142       67.99      F 150000
## 143       62.35      F 240000
## 145       62.01      F 276000
## 146       70.20      M 300000
## 147       60.44      M 168000
## 148       66.69      M 300000
## 150       59.81      M 270000
## 151       55.60      M 360000
## 152       62.00      M 300000
## 153       76.18      F 400000
## 154       57.03      M 220000
## 155       59.08      M 180000
## 156       58.85      M 180000
## 157       64.36      F 210000
## 158       62.36      F 210000
## 159       68.03      F 300000
## 160       66.86      F 290000
## 161       62.79      M 180000
## 163       59.47      F 230000
## 164       64.63      M 282000
## 165       53.57      M 260000
## 167       66.50      M 180000
## 168       54.97      M 260000
## 169       56.51      M 400000
## 170       62.16      M 420000
## 171       54.35      M 144000
## 172       64.44      F 300000
## 173       69.03      F 150000
## 174       57.31      F 220000
## 177       60.44      M 380000
## 178       59.99      M 290000
## 179       61.31      F 300000
## 180       55.42      F 252000
## 181       63.39      M 280000
## 182       65.83      M 240000
## 183       58.23      M 360000
## 185       65.69      M 180000
## 186       67.83      F 450000
## 187       73.52      M 200000
## 188       58.31      M 300000
## 189       53.37      M 350000
## 190       56.11      M 550000
## 192       63.36      M 250000
## 193       54.80      F 250000
## 195       53.94      M 250000
## 196       63.08      F 280000
## 197       55.01      M 250000
## 198       60.50      F 216000
## 199       52.42      M 204000
## 200       70.85      M 300000
## 201       67.05      M 240000
## 202       70.48      M 276000
## 203       64.34      M 940000
## 205       71.49      F 250000
## 206       59.99      M 300000
## 207       57.98      F 180000
## 208       71.00      F 236000
## 209       56.70      M 240000
## 210       61.26      M 250000
## 211       73.33      F 350000
## 212       59.50      M 210000
## 213       68.20      F 210000
## 214       58.40      F 250000
## 215       76.26      M 400000
## 216       70.71      M 300000
## 217       61.79      M 480000
## 218       68.55      M 250000
## 219       67.54      M 320000
## 221       69.94      M 385000
## 222       60.78      F 360000
## 223       53.49      M 300000
## 224       73.87      F 375000
## 225       60.98      M 250000
## 227       67.13      F 250000
## 228       58.73      F 275000
## 229       65.63      F 200000
## 230       61.58      F 150000
## 232       60.95      M 300000
## 233       60.41      M 225000
## 234       60.00      F 120000
## 235       71.77      F 250000
## 237       54.43      M 220000
## 238       57.24      M 265000
## 239       56.94      M 265000
## 242       61.29      M 260000
## 243       60.39      M 300000
## 244       51.73      M 180000
## 245       59.54      M 530000
## 246       56.75      M 156000
## 247       58.95      M 263000
## 249       63.23      M 400000
## 250       55.14      M 233000
## 251       62.28      M 300000
## 253       64.08      F 240000
## 254       58.54      M 180000
## 255       62.89      M 350000
## 256       55.67      M 198000
## 257       68.55      F 250000
## 259       61.30      M 690000
## 260       58.87      M 270000
## 261       65.25      F 240000
## 262       69.08      M 300000
## 263       62.48      M 340000
## 264       53.20      M 250000
## 265       59.84      M 390000
## 267       52.72      M 255000
## 268       55.03      M 300000
## 270       60.59      M 150000
## 271       72.29      M 300000
## 273       59.71      M 270000
## 274       53.47      F 240000
## 275       62.72      M 180000
## 276       66.06      M 285000
## 277       69.67      M 400000
## 278       66.46      M 500000
## 279       65.52      F 250000
## 280       56.78      M 300000
## 281       67.06      F 240000
## 282       71.86      M 300000
## 283       70.10      M 240000
## 286       52.38      M 240000
## 292       66.39      M 476000
## 293       66.04      M 290000
## 294       72.97      M 690000
## 295       52.64      M 300000
## 296       64.79      M 250000
## 297       59.32      F 162000
## 299       66.90      F 260000
## 300       66.23      M 500000
## 302       57.90      F 220000
## 303       58.67      M 270000
## 304       70.81      F 650000
## 305       68.07      M 350000
## 306       62.00      M 300000
## 308       56.60      M 265000
## 309       54.04      M 180000
## 311       64.28      F 300000
## 312       66.00      F 300000
## 313       68.68      F 300000
## 314       59.15      F 220000
## 316       54.12      M 240000
## 319       61.82      M 276000
## 320       66.28      M 250000
## 321       67.96      F 180000
## 323       71.43      F 252000
## 325       64.86      M 280000
## 327       66.63      F 350000
## 331       66.61      F 216000
## 333       61.01      M 264000
## 334       57.34      M 270000
## 335       56.63      F 300000
## 337       58.95      M 275000
## 339       54.50      M 300000
## 340       54.48      M 250000
## 341       69.71      F 260000
## 342       71.96      F 185000
## 343       63.91      F 216000
## 345       55.80      M 265000
## 346       52.81      M 300000
## 347       56.12      M 325000
## 348       53.37      M 267000
## 349       62.95      F 264000
## 351       60.11      M 240000
## 353       58.30      M 260000
## 354       69.12      F 240000
## 356       56.98      M 250000
## 357       63.42      F 180000
## 358       69.52      F 366000
## 359       67.69      F 210000
## 360       52.64      M 250000
## 361       56.81      M 250000
## 362       60.39      M 426000
## 363       60.04      M 270000
## 365       71.55      M 300000
## 366       56.45      M 132000
## 367       62.92      F 144000
## 368       55.40      M 220000
## 369       56.49      M 216000
## 370       74.49      M 400000
## 371       53.62      M 275000
## 372       69.72      M 295000
## 373       65.80      M 360000
## 374       60.23      F 204000
## 378       66.22      M 350000
## 380       77.30      F 300000
## 381       53.19      M 180000
## 385       61.00      M 252000
## 387       58.63      M 162000
## 388       59.50      M 450000
## 389       61.63      M 240000
## 390       70.17      F 300000
median(store.df$Salary[store.df$Placement == "Placed"] , na.rm = FALSE)
## [1] 260000
agg.data <- aggregate(Salary ~ Gender + Placement , data = store.df , mean)
agg.data
##   Gender  Placement Salary
## 1      F Not Placed      0
## 2      M Not Placed      0
## 3      F     Placed 253068
## 4      M     Placed 284242
hist(placed$Percent_MBA , main = "MBA Performance of placed students" , xlab = "MBA Percentage" , ylab = "Count" , xlim = c(50,80) , ylim = c(0,150) , col = "grey" , breaks = c(50,seq(60,80,10)))

notplaced <- subset(store.df , Placement == "Not Placed" , select = c(Percent_MBA , Gender , Salary))
notplaced
##     Percent_MBA Gender Salary
## 11        69.78      F      0
## 16        53.29      F      0
## 20        54.65      M      0
## 40        67.28      F      0
## 42        51.75      F      0
## 43        56.34      M      0
## 59        51.29      M      0
## 64        52.56      M      0
## 68        51.45      M      0
## 75        51.21      M      0
## 79        71.63      F      0
## 82        56.11      F      0
## 88        56.19      M      0
## 89        65.49      F      0
## 94        61.31      M      0
## 98        60.29      M      0
## 100       56.45      F      0
## 109       72.00      M      0
## 112       54.76      F      0
## 128       71.15      F      0
## 144       67.13      F      0
## 149       55.83      M      0
## 162       58.00      M      0
## 166       55.41      M      0
## 175       59.47      M      0
## 176       64.95      F      0
## 184       55.30      M      0
## 191       56.09      M      0
## 194       60.64      M      0
## 204       58.81      M      0
## 220       64.15      M      0
## 226       62.29      F      0
## 231       62.83      F      0
## 236       57.32      F      0
## 240       61.90      M      0
## 241       61.22      M      0
## 248       58.52      M      0
## 252       52.32      M      0
## 258       55.87      M      0
## 266       65.99      M      0
## 269       61.87      M      0
## 272       65.13      M      0
## 284       74.56      F      0
## 285       54.99      M      0
## 287       75.71      M      0
## 288       57.16      M      0
## 289       58.79      F      0
## 290       65.48      M      0
## 291       69.28      F      0
## 298       67.44      F      0
## 301       60.69      M      0
## 307       72.14      F      0
## 310       60.02      M      0
## 315       63.83      F      0
## 317       59.81      M      0
## 318       61.66      F      0
## 322       57.29      F      0
## 324       62.93      F      0
## 326       56.13      M      0
## 328       66.94      F      0
## 329       63.94      M      0
## 330       62.50      F      0
## 332       66.18      M      0
## 336       64.74      M      0
## 338       65.28      M      0
## 344       63.53      F      0
## 350       58.44      M      0
## 352       72.21      F      0
## 355       51.48      M      0
## 364       53.39      M      0
## 375       62.42      F      0
## 376       60.22      M      0
## 377       52.36      M      0
## 379       56.00      M      0
## 382       50.83      M      0
## 383       56.81      F      0
## 384       59.14      M      0
## 386       67.94      M      0
## 391       60.36      M      0
par(mfrow = c(1,2))

hist(placed$Percent_MBA , main = "MBA Performance of placed students" , xlab = "MBA Percentage" , ylab = "Count" , xlim = c(50,80) , ylim = c(0,150) , col = "grey" , breaks = c(50,seq(60,80,10)))

hist(notplaced$Percent_MBA , main = "MBA Performance of not placed students" , xlab = "MBA Percentage" , ylab = "Count" , xlim = c(50,80) , ylim = c(0,40) , col = "grey" , breaks = c(50,seq(60,80,10)))

par(mfrow = c(1,1))
library(lattice)
bwplot(Gender ~ Salary , data = placed , horizontal = TRUE , xlab = "Salary" , ylab = "Gender" , main = "Comparison of Salaries of Males and Females")

placedET <- subset(store.df , Placement == "Placed" & S.TEST == 1 , select = c(Salary , Percent_MBA , Percentile_ET))
placedET
##     Salary Percent_MBA Percentile_ET
## 1   270000       58.80         55.00
## 2   200000       66.28         86.50
## 4   250000       57.80         75.00
## 5   180000       59.43         66.00
## 8   235000       57.23         43.12
## 9   425000       55.50         96.80
## 12  250000       54.01         79.00
## 13  180000       51.58         55.00
## 15  450000       58.21         33.00
## 19  252000       62.14         67.00
## 21  280000       63.26         70.00
## 22  231000       61.29         91.34
## 23  224000       62.51         35.00
## 24  120000       52.21         54.00
## 25  260000       60.85         62.00
## 26  300000       60.77         75.00
## 28  120000       58.56         49.00
## 29  250000       63.70         60.00
## 30  180000       65.04         62.00
## 31  218000       68.63         68.00
## 33  150000       54.96         76.00
## 34  250000       64.19         48.00
## 35  200000       64.66         72.00
## 36  300000       62.54         60.00
## 37  330000       52.41         79.00
## 38  265000       56.61          0.00
## 39  340000       61.83         70.00
## 41  177600       64.08         68.00
## 44  236000       77.89         50.48
## 45  265000       56.70         50.00
## 47  393000       69.06         95.00
## 48  360000       68.81         55.53
## 49  300000       63.62         92.00
## 51  360000       74.01         97.40
## 52  180000       65.33         76.00
## 53  180000       62.80         74.00
## 55  240000       57.55         94.00
## 56  300000       60.76         41.38
## 57  265000       57.69         68.00
## 58  350000       64.15         73.35
## 60  250000       56.70         52.00
## 61  180000       58.32         64.00
## 62  278000       62.21         50.89
## 63  150000       57.61         83.00
## 65  260000       72.78         88.00
## 66  180000       62.77         68.44
## 67  300000       62.74         71.00
## 69  400000       68.85          0.00
## 70  320000       55.47         58.00
## 71  240000       56.86         53.70
## 72  411000       62.56         93.00
## 73  287000       66.72         60.00
## 74  198000       69.76         65.00
## 76  300000       62.90         95.00
## 77  200000       69.70         89.00
## 78  180000       66.53         58.00
## 80  204000       54.55         78.00
## 81  250000       62.46         64.00
## 83  200000       62.98         65.00
## 84  275000       62.27         97.33
## 85  192000       62.65         67.00
## 87  300000       60.91         53.00
## 90  450000       71.04         87.00
## 91  216000       65.56         78.00
## 92  220000       52.71         71.00
## 95  300000       67.31         68.00
## 96  240000       66.88         68.00
## 97  360000       63.59         80.00
## 99  268000       57.99         74.00
## 101 265000       56.66         57.60
## 102 260000       57.24         60.00
## 104 300000       62.48         61.60
## 105 240000       59.69         59.00
## 107 240000       64.75         44.56
## 108 400000       57.76         13.00
## 111 250000       76.72         78.00
## 114 180000       59.50         68.50
## 116 240000       58.78         61.00
## 117 120000       57.10         89.69
## 119 275000       58.46         68.92
## 120 275000       60.99         68.71
## 121 150000       59.24         79.00
## 122 275000       68.07         70.00
## 124 240000       58.75         41.00
## 126 360000       65.45         89.00
## 127 280000       62.40         46.92
## 129 325000       60.43         50.00
## 130 204000       60.76         40.00
## 131 240000       66.94         95.00
## 132 240000       68.53         95.50
## 133 336000       61.41         96.00
## 134 218000       59.75         86.00
## 136 336000       67.20         84.27
## 137 190000       67.00         74.00
## 138 230000       64.27         61.00
## 139 390000       51.24         94.30
## 140 500000       57.65         69.00
## 141 270000       59.42         86.04
## 142 150000       67.99         75.00
## 143 240000       62.35         67.00
## 145 276000       62.01         40.00
## 146 300000       70.20         86.00
## 147 168000       60.44         82.00
## 148 300000       66.69         84.00
## 150 270000       59.81          0.00
## 152 300000       62.00         55.00
## 153 400000       76.18         78.74
## 154 220000       57.03         67.00
## 155 180000       59.08         75.00
## 156 180000       58.85         64.00
## 157 210000       64.36         58.00
## 158 210000       62.36         62.00
## 159 300000       68.03         92.00
## 160 290000       66.86         92.00
## 161 180000       62.79         67.00
## 163 230000       59.47         72.00
## 164 282000       64.63         47.41
## 165 260000       53.57         29.00
## 167 180000       66.50         56.39
## 168 260000       54.97         53.88
## 169 400000       56.51         79.00
## 170 420000       62.16         95.46
## 172 300000       64.44         66.00
## 173 150000       69.03         93.91
## 174 220000       57.31         70.00
## 177 380000       60.44         78.00
## 179 300000       61.31         57.50
## 180 252000       55.42         67.00
## 181 280000       63.39         58.00
## 182 240000       65.83         85.00
## 183 360000       58.23         55.00
## 185 180000       65.69         71.00
## 186 450000       67.83         95.00
## 187 200000       73.52         80.00
## 188 300000       58.31         84.00
## 193 250000       54.80         57.20
## 195 250000       53.94         58.00
## 196 280000       63.08         72.15
## 197 250000       55.01         53.70
## 198 216000       60.50         89.00
## 199 204000       52.42         39.00
## 200 300000       70.85         96.00
## 201 240000       67.05         80.00
## 202 276000       70.48         97.00
## 203 940000       64.34         82.66
## 205 250000       71.49         55.67
## 206 300000       59.99         85.00
## 207 180000       57.98         14.99
## 208 236000       71.00         80.40
## 209 240000       56.70         60.00
## 210 250000       61.26         64.00
## 211 350000       73.33         75.00
## 213 210000       68.20         70.00
## 214 250000       58.40         55.50
## 215 400000       76.26         81.20
## 216 300000       70.71         84.00
## 217 480000       61.79         86.00
## 218 250000       68.55         90.00
## 219 320000       67.54         89.95
## 221 385000       69.94         65.00
## 222 360000       60.78         80.00
## 223 300000       53.49         74.40
## 225 250000       60.98         65.00
## 227 250000       67.13         94.00
## 228 275000       58.73         43.00
## 229 200000       65.63         55.60
## 230 150000       61.58         78.00
## 232 300000       60.95         65.00
## 233 225000       60.41         56.00
## 235 250000       71.77         96.00
## 237 220000       54.43         58.00
## 239 265000       56.94         56.00
## 242 260000       61.29         60.00
## 243 300000       60.39         89.00
## 244 180000       51.73         39.00
## 245 530000       59.54         65.00
## 246 156000       56.75         66.60
## 247 263000       58.95         40.00
## 249 400000       63.23         72.00
## 250 233000       55.14         85.00
## 251 300000       62.28         83.00
## 253 240000       64.08         57.00
## 254 180000       58.54         64.25
## 256 198000       55.67         40.00
## 259 690000       61.30         56.00
## 260 270000       58.87         83.00
## 261 240000       65.25         98.00
## 263 340000       62.48         86.00
## 264 250000       53.20         70.00
## 267 255000       52.72         80.00
## 268 300000       55.03         93.40
## 270 150000       60.59         62.00
## 271 300000       72.29         75.00
## 273 270000       59.71         49.70
## 275 180000       62.72         57.63
## 276 285000       66.06         75.20
## 278 500000       66.46         75.00
## 279 250000       65.52         53.04
## 283 240000       70.10         88.00
## 286 240000       52.38         63.00
## 292 476000       66.39         80.00
## 293 290000       66.04         63.79
## 294 690000       72.97         95.50
## 295 300000       52.64         84.00
## 296 250000       64.79         49.00
## 297 162000       59.32         67.00
## 300 500000       66.23         64.00
## 302 220000       57.90         55.00
## 303 270000       58.67         76.20
## 304 650000       70.81         89.00
## 305 350000       68.07         73.00
## 306 300000       62.00         44.20
## 308 265000       56.60         57.00
## 309 180000       54.04         35.00
## 311 300000       64.28         62.00
## 313 300000       68.68         74.00
## 316 240000       54.12          0.00
## 319 276000       61.82         60.00
## 323 252000       71.43         82.00
## 325 280000       64.86         95.00
## 327 350000       66.63         60.00
## 333 264000       61.01         72.00
## 334 270000       57.34         93.40
## 335 300000       56.63         80.00
## 337 275000       58.95         84.00
## 339 300000       54.50         85.00
## 340 250000       54.48         78.00
## 341 260000       69.71         59.32
## 342 185000       71.96         88.00
## 343 216000       63.91         79.00
## 345 265000       55.80         73.00
## 346 300000       52.81         87.55
## 347 325000       56.12         84.00
## 348 267000       53.37         83.00
## 351 240000       60.11         61.28
## 353 260000       58.30         66.00
## 354 240000       69.12         63.00
## 356 250000       56.98         63.00
## 357 180000       63.42         60.00
## 359 210000       67.69         80.00
## 360 250000       52.64         48.00
## 361 250000       56.81         62.00
## 362 426000       60.39         26.53
## 363 270000       60.04         98.00
## 365 300000       71.55         88.56
## 366 132000       56.45         64.00
## 367 144000       62.92         92.66
## 369 216000       56.49         67.00
## 370 400000       74.49         91.00
## 371 275000       53.62         74.00
## 372 295000       69.72         59.00
## 373 360000       65.80         73.00
## 374 204000       60.23         70.00
## 378 350000       66.22         66.00
## 380 300000       77.30         96.16
## 381 180000       53.19          0.00
## 385 252000       61.00          0.00
## 387 162000       58.63         34.53
## 388 450000       59.50         50.53
## 389 240000       61.63         60.00
## 390 300000       70.17         77.00
library(psych)
library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplotMatrix(formula = ~ Salary + Percent_MBA + Percentile_ET, data = placedET)