dados
##         id   prod ctrl_sev dis_pres       b0         b1     b0.SE
## 1   2012_1 2642.3   42.500        h 2898.667  -7.585391  7.085634
## 2   2012_2 3135.0   36.250        h 3927.859 -24.477332  6.810604
## 3   2012_3 2492.7   41.250        h 3251.704 -16.110989  7.418998
## 4   2012_4 2957.8   30.625        h 3445.446  -4.364499  3.941473
## 5   2012_6 3744.0   27.000        l 4218.295  -9.249662  7.425488
## 6   2012_7 2992.5   44.750        h 3610.327  -7.228888  2.185961
## 7   2012_8 3400.0   47.750        h 3848.940 -12.178492  6.589507
## 8   2013_1 3493.4   40.000        h 3882.550  -4.588254  4.537889
## 9  2013_10 2550.1   45.675        h 3330.020 -36.060893  5.574162
## 10 2013_12 1208.4   29.500        l 1969.408 -13.027761  6.169600
## 11  2013_3 2499.7   26.500        l 3751.011 -23.093483  2.966246
## 12  2013_5 2833.9   22.250        l 4249.448 -35.079457  5.220999
## 13  2013_8 2728.7   48.500        h 3617.205 -17.593282  2.909147
## 14  2013_9 1284.3   41.125        h 1603.815 -15.716396  5.834118
## 15  2014_1 3633.9   28.125        l 3883.763 -10.744523  3.000276
## 16 2014_10 1770.0   29.350        l 4118.405 -60.802565  8.080833
## 17 2014_11 2151.7   51.250        h 2740.186 -34.516343 11.252236
## 18 2014_12 1486.0   18.500        l 2428.840 -49.601622  9.013081
## 19 2014_14 2084.0   33.250        h 3670.118 -45.800428 11.329478
## 20 2014_15 3034.9   12.475        l 4281.515 -80.603137 25.597768
## 21 2014_16 2205.8   20.100        l 3005.912 -28.396429  5.929205
## 22  2014_2 3345.1   41.050        h 3541.663  -5.668744  2.877861
## 23  2014_5 3102.9   11.000        l 3920.497 -52.275505 14.465461
## 24  2014_6 3819.4   18.000        l 3828.731  -6.238477  4.140976
## 25  2014_8 3790.0   24.750        l 4559.966 -55.480689 11.510726
## 26  2014_9 3750.0   12.375        l 4584.237 -49.166246  7.341558
##        b1.SE
## 1  252.10767
## 2  201.26204
## 3  227.57640
## 4   86.87648
## 5  129.15512
## 6   68.90476
## 7  223.06366
## 8  123.84894
## 9   57.07209
## 10  72.30311
## 11 100.48090
## 12 149.42064
## 13  76.17176
## 14  81.44291
## 15  46.69593
## 16 269.20942
## 17  90.36883
## 18  92.18541
## 19 184.75890
## 20 143.58791
## 21  92.13784
## 22  93.80435
## 23 156.75904
## 24  75.97199
## 25  84.68645
## 26  74.38404

Ajuste dos modelos aleatorios

# Coeficiente angular "b1"


b1.rand        = rma.uni(b1, sei = b1.SE, method="ML",data= dados)
b1.rand 
## 
## Random-Effects Model (k = 26; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 1796.5955)
## tau (square root of estimated tau^2 value):      0
## I^2 (total heterogeneity / total variability):   0.00%
## H^2 (total variability / sampling variability):  1.00
## 
## Test for Heterogeneity: 
## Q(df = 25) = 0.9855, p-val = 1.0000
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
## -23.4449  18.0504  -1.2989   0.1940 -58.8229  11.9332          
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
forest (b1.rand, slab = dados$id)

# Intercepto "b0"

b0.rand         = rma.uni(b0, sei = b0.SE, method="ML",data= dados)
b0.rand
## 
## Random-Effects Model (k = 26; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of total heterogeneity): 526163.7940 (SE = 145952.4837)
## tau (square root of estimated tau^2 value):      725.3715
## I^2 (total heterogeneity / total variability):   100.00%
## H^2 (total variability / sampling variability):  22636.30
## 
## Test for Heterogeneity: 
## Q(df = 25) = 310552.4724, p-val < .0001
## 
## Model Results:
## 
##  estimate        se      zval      pval     ci.lb     ci.ub           
## 3544.9057  142.2672   24.9172    <.0001 3266.0671 3823.7444       *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
forest (b0.rand, slab = dados$id)

Incluindo uma variavel moderadora qualitativa: pressão de doença (severidade no tratamento controle, low=10-30% ou high >30%)

# Intercepto

b0.dis_press    = rma.uni(b0,  sei = b0.SE, mods =  ~ factor(dis_pres),  method = "ML", data =  dados) ; b0.dis_press
## 
## Mixed-Effects Model (k = 26; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     482551.2729 (SE = 133856.5455)
## tau (square root of estimated tau^2 value):             694.6591
## I^2 (residual heterogeneity / unaccounted variability): 99.99%
## H^2 (unaccounted variability / sampling variability):   19846.09
## R^2 (amount of heterogeneity accounted for):            8.29%
## 
## Test for Residual Heterogeneity: 
## QE(df = 24) = 294354.4848, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 2.3502, p-val = 0.1253
## 
## Model Results:
## 
##                                     se     zval    pval      ci.lb
## intrcpt            3336.0465  192.6726  17.3146  <.0001  2958.4152
## factor(dis_pres)l   417.7388  272.4890   1.5330  0.1253  -116.3298
##                        ci.ub     
## intrcpt            3713.6778  ***
## factor(dis_pres)l   951.8074     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Coeficiente angular

b1.dis_press    = rma.uni(b1,  sei = b1.SE, mods =  ~ factor(dis_pres),  method = "ML", data =  dados); b1.dis_press
## 
## Mixed-Effects Model (k = 26; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 1796.5955)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            NA%
## 
## Test for Residual Heterogeneity: 
## QE(df = 24) = 0.9369, p-val = 1.0000
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 0.0486, p-val = 0.8256
## 
## Model Results:
## 
##                                   se     zval    pval     ci.lb    ci.ub
## intrcpt            -19.0544  26.8836  -0.7088  0.4785  -71.7452  33.6364
## factor(dis_pres)l   -7.9946  36.2767  -0.2204  0.8256  -79.0955  63.1064
##                     
## intrcpt             
## factor(dis_pres)l   
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Incluindo a variavel moderadora pressao de doença como qualitativa: pressão de doença (severidade no tratamento controle)

b0.ctrl_sev     = rma.uni(b0,  sei = b0.SE, mods =  ~ ctrl_sev,  method = "ML", data =  dados); b0.ctrl_sev 
## 
## Mixed-Effects Model (k = 26; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     463589.0701 (SE = 128597.3762)
## tau (square root of estimated tau^2 value):             680.8738
## I^2 (residual heterogeneity / unaccounted variability): 99.99%
## H^2 (unaccounted variability / sampling variability):   19139.34
## R^2 (amount of heterogeneity accounted for):            11.89%
## 
## Test for Residual Heterogeneity: 
## QE(df = 24) = 295796.2067, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 3.5101, p-val = 0.0610
## 
## Model Results:
## 
##                            se     zval    pval      ci.lb      ci.ub     
## intrcpt   4214.7707  381.6675  11.0430  <.0001  3466.7162  4962.8252  ***
## ctrl_sev   -21.1384   11.2826  -1.8735  0.0610   -43.2519     0.9751    .
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b1.ctrl_sev     = rma.uni(b1,  sei = b1.SE, mods =  ~ ctrl_sev,  method = "ML", data =  dados); b0.ctrl_sev
## 
## Mixed-Effects Model (k = 26; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     463589.0701 (SE = 128597.3762)
## tau (square root of estimated tau^2 value):             680.8738
## I^2 (residual heterogeneity / unaccounted variability): 99.99%
## H^2 (unaccounted variability / sampling variability):   19139.34
## R^2 (amount of heterogeneity accounted for):            11.89%
## 
## Test for Residual Heterogeneity: 
## QE(df = 24) = 295796.2067, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 3.5101, p-val = 0.0610
## 
## Model Results:
## 
##                            se     zval    pval      ci.lb      ci.ub     
## intrcpt   4214.7707  381.6675  11.0430  <.0001  3466.7162  4962.8252  ***
## ctrl_sev   -21.1384   11.2826  -1.8735  0.0610   -43.2519     0.9751    .
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1