Methods: Part I. Biofilm data: In 1-3 below you’ll find Chlorophyll, P uptake, and P/Chlo plots followed by simple linear models with ‘Site’ as random effect. I am currently searching alternative ways to analyze this data (responses are not normally distr.,log transform doesn’t improve that much and design is *not balanced anymore), but I would expect the trends hold if I used models that fit the data better. Part II. Leaf Litter data. Same issues apply.
Results: Part I. No direct effects of biofilm accrual were detetcted between open and close reaches but chlorophyll varied within reaches through a significant Stream Type *Canopy interaction (see 1, Chlorophyll). However, no significant effects on phosphorous uptake were detected, at least with a linear model. Part II. Leaves rom agricultural streams were significantly more fragmented than those from forested streams. Leaflitter decomposition followed a similar pattern, with more leaf mass remaining in leaves from forest than agricultural streams.
## Canopy Type N Chlorophyll sd se ci
## 1 Closed Agro 15 5.384880 5.8276220 1.5046855 3.2272295
## 2 Closed Forest 9 1.530978 1.1524944 0.3841648 0.8858857
## 3 Open Agro 15 17.972240 23.0947868 5.9630483 12.7894666
## 4 Open Forest 8 1.465950 0.7173697 0.2536285 0.5997361
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: LogChlorophyll ~ Type * Canopy + (1 | Name)
## Data: Balls
##
## REML criterion at convergence: 91.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.28908 -0.66304 -0.01105 0.56914 1.92414
##
## Random effects:
## Groups Name Variance Std.Dev.
## Name (Intercept) 0.9820 0.9910
## Residual 0.2671 0.5168
## Number of obs: 47, groups: Name, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 0.97871 0.45909 3.01000 2.132 0.12237
## Type1 0.73039 0.45909 3.01000 1.591 0.20943
## Canopy1 -0.22938 0.07861 40.01000 -2.918 0.00576 **
## Type1:Canopy1 -0.18368 0.07861 40.01000 -2.337 0.02456 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Type1 Canpy1
## Type1 -0.202
## Canopy1 -0.006 0.006
## Type1:Cnpy1 0.006 -0.006 -0.280
## Analysis of Variance Table of type III with Satterthwaite
## approximation for degrees of freedom
## Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
## Type 0.67613 0.67613 1 3.014 2.5311 0.209428
## Canopy 2.27430 2.27430 1 40.011 8.5140 0.005757 **
## Type:Canopy 1.45832 1.45832 1 40.011 5.4593 0.024558 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Canopy Type N UP sd se ci
## 1 Closed Agro 15 1.276301 0.4389530 0.11333717 0.2430840
## 2 Closed Forest 9 1.210700 0.4239154 0.14130512 0.3258502
## 3 Open Agro 15 1.331308 0.3769649 0.09733192 0.2087562
## 4 Open Forest 9 1.406729 0.3365328 0.11217759 0.2586820
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: UP ~ Type * Canopy + (1 | Name)
## Data: Balls
##
## REML criterion at convergence: 59.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6207 -0.6461 -0.1466 0.6469 2.3837
##
## Random effects:
## Groups Name Variance Std.Dev.
## Name (Intercept) 0.009995 0.09998
## Residual 0.153200 0.39141
## Number of obs: 48, groups: Name, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 1.306259 0.074073 3.140000 17.635 0.000304 ***
## Type1 -0.002455 0.074073 3.140000 -0.033 0.975557
## Canopy1 -0.060715 0.058431 41.410000 -1.039 0.304792
## Type1:Canopy1 0.033212 0.058431 41.410000 0.568 0.572839
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Type1 Canpy1
## Type1 -0.231
## Canopy1 0.000 0.000
## Type1:Cnpy1 0.000 0.000 -0.252
## Analysis of Variance Table of type III with Satterthwaite
## approximation for degrees of freedom
## Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
## Type 0.000168 0.000168 1 3.137 0.00110 0.9756
## Canopy 0.165411 0.165411 1 41.409 1.07971 0.3048
## Type:Canopy 0.049494 0.049494 1 41.409 0.32307 0.5728
## Canopy Type N UPperClo sd se ci
## 1 Closed Agro 15 491.8667 449.8397 116.14811 249.1129
## 2 Closed Forest 9 1151.7723 664.3993 221.46642 510.7025
## 3 Open Agro 15 310.9156 332.3337 85.80818 184.0402
## 4 Open Forest 8 1145.5870 559.8127 197.92370 468.0152
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: UPperClo ~ Type * Canopy + (1 | Name)
## Data: Balls
##
## REML criterion at convergence: 653.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4401 -0.4485 -0.0893 0.2626 3.7867
##
## Random effects:
## Groups Name Variance Std.Dev.
## Name (Intercept) 146371 382.6
## Residual 138430 372.1
## Number of obs: 47, groups: Name, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 767.71 183.56 3.02 4.182 0.0245 *
## Type1 -366.32 183.56 3.02 -1.996 0.1392
## Canopy1 39.46 56.59 38.72 0.697 0.4898
## Type1:Canopy1 51.02 56.59 38.72 0.902 0.3729
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Type1 Canpy1
## Type1 -0.208
## Canopy1 -0.011 0.011
## Type1:Cnpy1 0.011 -0.011 -0.279
## Analysis of Variance Table of type III with Satterthwaite
## approximation for degrees of freedom
## Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
## Type 551277 551277 1 3.024 3.9824 0.1392
## Canopy 67312 67312 1 39.899 0.4863 0.4896
## Type:Canopy 112517 112517 1 39.899 0.8128 0.3727
## Canopy Type N Percent.AFDM.rem sd se ci
## 1 Closed Agro 28 23.31964 14.887963 2.813561 5.772949
## 2 Closed Forest 16 43.74562 9.175036 2.293759 4.889032
## 3 Open Agro 28 22.30214 13.913022 2.629314 5.394907
## 4 Open Forest 20 45.14400 11.604539 2.594854 5.431091
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: Percent.AFDM.rem ~ Type * Canopy + (1 | Name)
## Data: Breakdown
##
## REML criterion at convergence: 711
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7785 -0.5582 0.1432 0.7036 1.7044
##
## Random effects:
## Groups Name Variance Std.Dev.
## Name (Intercept) 42.25 6.50
## Residual 144.63 12.03
## Number of obs: 92, groups: Name, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 33.6424 3.2374 3.0100 10.392 0.00188 **
## Type1 -10.9773 3.2374 3.0100 -3.391 0.04256 *
## Canopy1 0.2149 1.2963 85.3400 0.166 0.86873
## Type1:Canopy1 0.7392 1.2963 85.3400 0.570 0.57000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Type1 Canpy1
## Type1 -0.205
## Canopy1 0.030 -0.030
## Type1:Cnpy1 -0.030 0.030 -0.226
## Analysis of Variance Table of type III with Satterthwaite
## approximation for degrees of freedom
## Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
## Type 1662.96 1662.96 1 3.009 11.4977 0.04256 *
## Canopy 3.97 3.97 1 85.338 0.0275 0.86873
## Type:Canopy 47.03 47.03 1 85.338 0.3252 0.57000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Our hypotheses were: 1) That biofilm accrual will be higher at open than at closed reaches==> Partially supported? No differences between reaches. We did find higher chlorophyll in nutrient-rich streams but this didn’t translate into more P uptake. 2) That higher biofilm accrual will boost litter breakdown at nutrient-poor but not at nutrient-rich streams ==> Not supported, as there wasn’t higher accrual in forests? or, what’s right way to test this? 3) That the effect will be higher for invertebrate fragmentation than for microbial decomposition ===> how do we see this? comparing fine vs coarse mesh?