RS Measures

fpnetwork - mean network connectivity for fp network defined by Power (2011) rnetwork - mean network connectivity for “limping” reward network partially defined by Power’s coordiates rslOFC_lIFG - ROI to ROI connectivtiy between left OFC and IFG

fMRI Measures

l_OFC_fvn- z scored Activation for food vs neutal ads in the left OFC l_IFG_fvn- z scored Activation for for food vs neutal ads in the left IFG balanceScore_fvn- lopez calucuation on food vs. neutral ROIs wagnerbalance_fvn- wagner calucuation on food vs. neutral ROIs l_IFG_fvn - l_OFC_fvn

DTI Measures

FA_thr50 - FA connectivity values between lIFG and lOFC thresholded at 50% FA_thr75 - FA connectivity values between lIFG and lOFC thresholded at 75%

Other Measures

Age_Months - age in months BMI - BMI calucluated from self reported hight and weight

Load in Data

Note- this is exculudeing 3 people, 2 for BMI outliers and 1 for DTI outlier.

library(ggplot2)
library("PerformanceAnalytics")
indiffraw = read.csv("E:/Box Sync/wlab/lab-members/aml/certs1-pilot/3-experiment-fmri/eye-tracking-MRI/individualdiff_food.csv", stringsAsFactors = FALSE)

indiffrestraw = read.csv("E:/Box Sync/wlab/lab-members/aml/certs1-pilot/3-experiment-fmri/eye-tracking-MRI/individualdiffRESTINCLUDEDONLY_food.csv", stringsAsFactors = FALSE)


indiffrest <- indiffrestraw[-c(24,20,9),]
indiff <-indiffraw[-c(30,24,13),]
my_data <- indiffrest[,c('BMI','Age_Months', 'l_OFC','l_IFG', 'wagnerBalance', 'zDTDiff', 'FA_thr50', 'fpnetwork', 'rslIFG_lOFC','balanceScore', 'MMTTotal', 'l_OFC_fvn','l_IFG_fvn','wagnerBalance_fvn', 'balanceScore_fvn', 'l_OFC_fvo','l_IFG_fvo','wagnerBalance_fvo', 'balanceScore_fvo')]
chart.Correlation(my_data, histogram=TRUE, pch=19)

my_data <- indiff[,c('BMI','Age_Months', 'l_OFC','l_IFG', 'wagnerBalance', 'zDTDiff', 'FA_thr50', 'balanceScore', 'MMTTotal', 'l_OFC_fvn','l_IFG_fvn','wagnerBalance_fvn', 'balanceScore_fvn', 'l_OFC_fvo','l_IFG_fvo','wagnerBalance_fvo', 'balanceScore_fvo')]
chart.Correlation(my_data, histogram=TRUE, pch=19)

BMI and fMRI

cor.test(indiff$BMI, indiff$l_OFC_fvn)
## 
##  Pearson's product-moment correlation
## 
## data:  indiff$BMI and indiff$l_OFC_fvn
## t = 2.0716, df = 40, p-value = 0.04479
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.008115718 0.562037637
## sample estimates:
##       cor 
## 0.3112793
r <- round(cor(indiff$BMI, indiff$l_OFC_fvn), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiff$BMI, indiff$l_OFC_fvn)$p.value, 4)
p <- paste('p =',p)
qplot(indiff$BMI, indiff$l_OFC_fvn, data = indiff) + geom_smooth(method = 'lm') + annotate('text', 30,1.9,label= r)+ annotate('text', 30,1.7,label= p)

ggsave(file = 'BMI and l_OFC_fvn.pdf')
## Saving 7 x 5 in image
cor.test(indiff$BMI, indiff$l_IFG_fvn)
## 
##  Pearson's product-moment correlation
## 
## data:  indiff$BMI and indiff$l_IFG_fvn
## t = 1.2114, df = 40, p-value = 0.2328
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1228311  0.4654423
## sample estimates:
##       cor 
## 0.1881234
r <- round(cor(indiff$BMI, indiff$l_IFG_fvn), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiff$BMI, indiff$l_IFG_fvn)$p.value, 4)
p <- paste('p =',p)
qplot(indiff$BMI, indiff$l_IFG_fvn, data = indiff) + geom_smooth(method = 'lm') + annotate('text', 30,1.9,label= r)+ annotate('text', 30,1.7,label= p)

ggsave(file = 'BMI and l_IFG_fvn.pdf')
## Saving 7 x 5 in image

BMI and Balance Scores

cor.test(indiff$BMI, indiff$wagnerBalance_fvn)
## 
##  Pearson's product-moment correlation
## 
## data:  indiff$BMI and indiff$wagnerBalance_fvn
## t = -0.73306, df = 40, p-value = 0.4678
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.404899  0.195641
## sample estimates:
##        cor 
## -0.1151365
r <- round(cor(indiff$BMI, indiff$wagnerBalance_fvn), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiff$BMI, indiff$wagnerBalance_fvn)$p.value, 4)
p <- paste('p =',p)
qplot(indiff$BMI, indiff$wagnerBalance_fvn, data = indiff) + geom_smooth(method = 'lm') + annotate('text', 30,1.9,label= r)+ annotate('text', 30,1.7,label= p)

ggsave(file = 'BMI and wagnerBalance_fvn.pdf')
## Saving 7 x 5 in image
cor.test(indiff$BMI, indiff$balanceScore_fvn)
## 
##  Pearson's product-moment correlation
## 
## data:  indiff$BMI and indiff$balanceScore_fvn
## t = 2.3774, df = 40, p-value = 0.02231
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.05367055 0.59243723
## sample estimates:
##       cor 
## 0.3518623
r <- round(cor(indiff$BMI, indiff$balanceScore_fvn), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiff$BMI, indiff$balanceScore_fvn)$p.value, 4)
p <- paste('p =',p)
qplot(indiff$BMI, indiff$balanceScore_fvn, data = indiff) + geom_smooth(method = 'lm') + annotate('text', 30,1.9,label= r)+ annotate('text', 30,1.7,label= p)

ggsave(file = 'BMI and balanceScore_fvn.pdf')
## Saving 7 x 5 in image

BMI and DTI

cor.test(indiff$BMI, indiff$FA_thr50)
## 
##  Pearson's product-moment correlation
## 
## data:  indiff$BMI and indiff$FA_thr50
## t = -1.1458, df = 40, p-value = 0.2587
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4574084  0.1328714
## sample estimates:
##        cor 
## -0.1782587
r <- round(cor(indiff$BMI, indiff$FA_thr50), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiff$BMI, indiff$FA_thr50)$p.value, 4)
p <- paste('p =',p)
qplot(indiff$BMI, indiff$FA_thr50, data = indiff) + geom_smooth(method = 'lm') + annotate('text', 30,.3,label= r)+ annotate('text', 30,.35,label= p)

ggsave(file = 'BMI and FA_thr50.pdf')
## Saving 7 x 5 in image
cor.test(indiff$BMI, indiff$FA_thr75)
## 
##  Pearson's product-moment correlation
## 
## data:  indiff$BMI and indiff$FA_thr75
## t = -1.4618, df = 40, p-value = 0.1516
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.49523137  0.08452067
## sample estimates:
##        cor 
## -0.2251956
r <- round(cor(indiff$BMI, indiff$FA_thr75), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiff$BMI, indiff$FA_thr75)$p.value, 4)
p <- paste('p =',p)
qplot(indiff$BMI, indiff$FA_thr75, data = indiff) + geom_smooth(method = 'lm') + annotate('text', 30,.3,label= r)+ annotate('text', 30,.35,label= p)

ggsave(file = 'BMI and FA_thr75.pdf')
## Saving 7 x 5 in image

BMI and Rest

cor.test(indiffrest$BMI, indiffrest$rslIFG_lOFC)
## 
##  Pearson's product-moment correlation
## 
## data:  indiffrest$BMI and indiffrest$rslIFG_lOFC
## t = 1.4719, df = 32, p-value = 0.1508
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.09439377  0.54367940
## sample estimates:
##       cor 
## 0.2518099
r <- round(cor(indiffrest$BMI, indiffrest$rslIFG_lOFC), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiffrest$BMI, indiffrest$rslIFG_lOFC)$p.value, 4)
p <- paste('p =',p)
qplot(indiffrest$BMI, indiffrest$rslIFG_lOFC, data = indiffrest) + geom_smooth(method = 'lm') + annotate('text', 30,.3,label= r)+ annotate('text', 30,.35,label= p)

ggsave(file = 'BMI and rslIFG_lOFC.pdf')
## Saving 7 x 5 in image
cor.test(indiffrest$BMI, indiffrest$fpnetwork)
## 
##  Pearson's product-moment correlation
## 
## data:  indiffrest$BMI and indiffrest$fpnetwork
## t = -0.18375, df = 32, p-value = 0.8554
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3666059  0.3090941
## sample estimates:
##         cor 
## -0.03246496
r <- round(cor(indiffrest$BMI, indiffrest$fpnetwork), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiffrest$BMI, indiffrest$fpnetwork)$p.value, 4)
p <- paste('p =',p)
qplot(indiffrest$BMI, indiffrest$fpnetwork, data = indiffrest) + geom_smooth(method = 'lm') + annotate('text', 30,.3,label= r)+ annotate('text', 30,.35,label= p)

ggsave(file = 'BMI and fpnetwork.pdf')
## Saving 7 x 5 in image

A few Model Tests

m1<-lm(BMI ~ l_OFC_fvn, data = indiff)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ l_OFC_fvn, data = indiff)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4929 -2.1742 -0.5599  1.8392  8.1744 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  22.2577     0.5039  44.167   <2e-16 ***
## l_OFC_fvn     1.4984     0.7233   2.072   0.0448 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.954 on 40 degrees of freedom
## Multiple R-squared:  0.09689,    Adjusted R-squared:  0.07432 
## F-statistic: 4.292 on 1 and 40 DF,  p-value: 0.04479
m1<-lm(BMI ~ wagnerBalance_fvn, data = indiff)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ wagnerBalance_fvn, data = indiff)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3732 -2.3429 -0.6865  1.8845  8.2085 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        22.7339     0.4782  47.539   <2e-16 ***
## wagnerBalance_fvn  -0.3538     0.4827  -0.733    0.468    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.087 on 40 degrees of freedom
## Multiple R-squared:  0.01326,    Adjusted R-squared:  -0.01141 
## F-statistic: 0.5374 on 1 and 40 DF,  p-value: 0.4678
m1<-lm(BMI ~ balanceScore_fvn +  rslIFG_lOFC, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ balanceScore_fvn + rslIFG_lOFC, data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5374 -1.5344 -0.4688  1.8138  3.3232 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       21.8892     0.3536  61.903  < 2e-16 ***
## balanceScore_fvn   1.4654     0.5100   2.873  0.00727 ** 
## rslIFG_lOFC        3.1105     1.9147   1.625  0.11439    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.014 on 31 degrees of freedom
## Multiple R-squared:  0.2604, Adjusted R-squared:  0.2127 
## F-statistic: 5.457 on 2 and 31 DF,  p-value: 0.009321
m1<-lm(BMI ~ wagnerBalance_fvn + rslIFG_lOFC, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ wagnerBalance_fvn + rslIFG_lOFC, data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0558 -1.7080 -0.5694  1.7426  4.1066 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        21.8247     0.3974  54.913   <2e-16 ***
## wagnerBalance_fvn   0.4044     0.4539   0.891    0.380    
## rslIFG_lOFC         3.3482     2.1427   1.563    0.128    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.238 on 31 degrees of freedom
## Multiple R-squared:  0.08679,    Adjusted R-squared:  0.02788 
## F-statistic: 1.473 on 2 and 31 DF,  p-value: 0.2448
m1<-lm(BMI ~ balanceScore_fvn +  FA_thr50, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ balanceScore_fvn + FA_thr50, data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3508 -1.4403 -0.3666  1.7748  3.2262 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)        16.889     10.162   1.662   0.1066  
## balanceScore_fvn    1.444      0.531   2.719   0.0106 *
## FA_thr50           12.032     23.853   0.504   0.6175  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.09 on 31 degrees of freedom
## Multiple R-squared:  0.204,  Adjusted R-squared:  0.1526 
## F-statistic: 3.972 on 2 and 31 DF,  p-value: 0.02914
m1<-lm(BMI ~ wagnerBalance_fvn + FA_thr50, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ wagnerBalance_fvn + FA_thr50, data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2520 -1.5838 -0.0256  1.9758  4.5215 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)        16.4238    11.8762   1.383    0.177
## wagnerBalance_fvn   0.2437     0.4944   0.493    0.626
## FA_thr50           13.0367    27.9218   0.467    0.644
## 
## Residual standard error: 2.317 on 31 degrees of freedom
## Multiple R-squared:  0.02175,    Adjusted R-squared:  -0.04137 
## F-statistic: 0.3446 on 2 and 31 DF,  p-value: 0.7112
m1<-lm(BMI ~ balanceScore_fvn +  rslIFG_lOFC + FA_thr50, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ balanceScore_fvn + rslIFG_lOFC + FA_thr50, 
##     data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5270 -1.3940 -0.5031  1.5846  3.0866 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)       14.4072     9.9717   1.445  0.15888   
## balanceScore_fvn   1.4318     0.5156   2.777  0.00936 **
## rslIFG_lOFC        3.3134     1.9471   1.702  0.09916 . 
## FA_thr50          17.5549    23.3814   0.751  0.45862   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.029 on 30 degrees of freedom
## Multiple R-squared:  0.274,  Adjusted R-squared:  0.2014 
## F-statistic: 3.775 on 3 and 30 DF,  p-value: 0.02071
m1<-lm(BMI ~ wagnerBalance_fvn + rslIFG_lOFC + FA_thr50, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ wagnerBalance_fvn + rslIFG_lOFC + FA_thr50, 
##     data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0033 -1.6618 -0.4754  1.6466  4.3167 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)        14.3041    11.6589   1.227    0.229
## wagnerBalance_fvn   0.3044     0.4837   0.629    0.534
## rslIFG_lOFC         3.4962     2.1753   1.607    0.118
## FA_thr50           17.6770    27.3876   0.645    0.524
## 
## Residual standard error: 2.26 on 30 degrees of freedom
## Multiple R-squared:  0.0993, Adjusted R-squared:  0.009232 
## F-statistic: 1.103 on 3 and 30 DF,  p-value: 0.3634
m1<-lm(BMI ~ rslIFG_lOFC + FA_thr50, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ rslIFG_lOFC + FA_thr50, data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1018 -1.8403 -0.6811  1.6666  4.1453 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)   11.992     10.957   1.094    0.282
## rslIFG_lOFC    3.389      2.147   1.578    0.125
## FA_thr50      23.197     25.691   0.903    0.374
## 
## Residual standard error: 2.238 on 31 degrees of freedom
## Multiple R-squared:  0.08741,    Adjusted R-squared:  0.02853 
## F-statistic: 1.485 on 2 and 31 DF,  p-value: 0.2423

FOOD VS OUTDOOR CONTRAST

BMI and fMRI

cor.test(indiff$BMI, indiff$l_OFC_fvo)
## 
##  Pearson's product-moment correlation
## 
## data:  indiff$BMI and indiff$l_OFC_fvo
## t = 0.023908, df = 40, p-value = 0.981
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3004964  0.3073584
## sample estimates:
##         cor 
## 0.003780199
r <- round(cor(indiff$BMI, indiff$l_OFC_fvo), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiff$BMI, indiff$l_OFC_fvo)$p.value, 4)
p <- paste('p =',p)
qplot(indiff$BMI, indiff$l_OFC_fvo, data = indiff) + geom_smooth(method = 'lm') + annotate('text', 30,1.9,label= r)+ annotate('text', 30,1.7,label= p)

ggsave(file = 'BMI and l_OFC_fvo.pdf')
## Saving 7 x 5 in image
cor.test(indiff$BMI, indiff$l_IFG_fvo)
## 
##  Pearson's product-moment correlation
## 
## data:  indiff$BMI and indiff$l_IFG_fvo
## t = -0.023808, df = 40, p-value = 0.9811
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3073440  0.3005109
## sample estimates:
##          cor 
## -0.003764303
r <- round(cor(indiff$BMI, indiff$l_IFG_fvo), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiff$BMI, indiff$l_IFG_fvo)$p.value, 4)
p <- paste('p =',p)
qplot(indiff$BMI, indiff$l_IFG_fvo, data = indiff) + geom_smooth(method = 'lm') + annotate('text', 30,1.9,label= r)+ annotate('text', 30,1.7,label= p)

ggsave(file = 'BMI and l_IFG_fvo.pdf')
## Saving 7 x 5 in image

BMI and Balance Scores

cor.test(indiff$BMI, indiff$wagnerBalance_fvo)
## 
##  Pearson's product-moment correlation
## 
## data:  indiff$BMI and indiff$wagnerBalance_fvo
## t = -0.039801, df = 40, p-value = 0.9684
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3096321  0.2982088
## sample estimates:
##          cor 
## -0.006292944
r <- round(cor(indiff$BMI, indiff$wagnerBalance_fvo), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiff$BMI, indiff$wagnerBalance_fvo)$p.value, 4)
p <- paste('p =',p)
qplot(indiff$BMI, indiff$wagnerBalance_fvo, data = indiff) + geom_smooth(method = 'lm') + annotate('text', 30,1.9,label= r)+ annotate('text', 30,1.7,label= p)

ggsave(file = 'BMI and wagnerBalance_fvo.pdf')
## Saving 7 x 5 in image
cor.test(indiff$BMI, indiff$balanceScore_fvo)
## 
##  Pearson's product-moment correlation
## 
## data:  indiff$BMI and indiff$balanceScore_fvo
## t = 0.82465, df = 40, p-value = 0.4145
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1817801  0.4168454
## sample estimates:
##       cor 
## 0.1292947
r <- round(cor(indiff$BMI, indiff$balanceScore_fvo), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiff$BMI, indiff$balanceScore_fvo)$p.value, 4)
p <- paste('p =',p)
qplot(indiff$BMI, indiff$balanceScore_fvo, data = indiff) + geom_smooth(method = 'lm') + annotate('text', 30,1.9,label= r)+ annotate('text', 30,1.7,label= p)

ggsave(file = 'BMI and balanceScore_fvo.pdf')
## Saving 7 x 5 in image

BMI and DTI

cor.test(indiff$BMI, indiff$FA_thr50)
## 
##  Pearson's product-moment correlation
## 
## data:  indiff$BMI and indiff$FA_thr50
## t = -1.1458, df = 40, p-value = 0.2587
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4574084  0.1328714
## sample estimates:
##        cor 
## -0.1782587
r <- round(cor(indiff$BMI, indiff$FA_thr50), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiff$BMI, indiff$FA_thr50)$p.value, 4)
p <- paste('p =',p)
qplot(indiff$BMI, indiff$FA_thr50, data = indiff) + geom_smooth(method = 'lm') + annotate('text', 30,.3,label= r)+ annotate('text', 30,.35,label= p)

ggsave(file = 'BMI and FA_thr50.pdf')
## Saving 7 x 5 in image
cor.test(indiff$BMI, indiff$FA_thr75)
## 
##  Pearson's product-moment correlation
## 
## data:  indiff$BMI and indiff$FA_thr75
## t = -1.4618, df = 40, p-value = 0.1516
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.49523137  0.08452067
## sample estimates:
##        cor 
## -0.2251956
r <- round(cor(indiff$BMI, indiff$FA_thr75), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiff$BMI, indiff$FA_thr75)$p.value, 4)
p <- paste('p =',p)
qplot(indiff$BMI, indiff$FA_thr75, data = indiff) + geom_smooth(method = 'lm') + annotate('text', 30,.3,label= r)+ annotate('text', 30,.35,label= p)

ggsave(file = 'BMI and FA_thr75.pdf')
## Saving 7 x 5 in image

BMI and Rest

cor.test(indiffrest$BMI, indiffrest$rslIFG_lOFC)
## 
##  Pearson's product-moment correlation
## 
## data:  indiffrest$BMI and indiffrest$rslIFG_lOFC
## t = 1.4719, df = 32, p-value = 0.1508
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.09439377  0.54367940
## sample estimates:
##       cor 
## 0.2518099
r <- round(cor(indiffrest$BMI, indiffrest$rslIFG_lOFC), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiffrest$BMI, indiffrest$rslIFG_lOFC)$p.value, 4)
p <- paste('p =',p)
qplot(indiffrest$BMI, indiffrest$rslIFG_lOFC, data = indiffrest) + geom_smooth(method = 'lm') + annotate('text', 30,.3,label= r)+ annotate('text', 30,.35,label= p)

ggsave(file = 'BMI and rslIFG_lOFC.pdf')
## Saving 7 x 5 in image
cor.test(indiffrest$BMI, indiffrest$fpnetwork)
## 
##  Pearson's product-moment correlation
## 
## data:  indiffrest$BMI and indiffrest$fpnetwork
## t = -0.18375, df = 32, p-value = 0.8554
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3666059  0.3090941
## sample estimates:
##         cor 
## -0.03246496
r <- round(cor(indiffrest$BMI, indiffrest$fpnetwork), 4)
r<- paste('r =',r) 
p <- round(cor.test(indiffrest$BMI, indiffrest$fpnetwork)$p.value, 4)
p <- paste('p =',p)
qplot(indiffrest$BMI, indiffrest$fpnetwork, data = indiffrest) + geom_smooth(method = 'lm') + annotate('text', 30,.3,label= r)+ annotate('text', 30,.35,label= p)

ggsave(file = 'BMI and fpnetwork.pdf')
## Saving 7 x 5 in image

A few Model Tests

m1<-lm(BMI ~ l_OFC_fvo, data = indiff)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ l_OFC_fvo, data = indiff)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1157 -2.3418 -0.5933  1.7163  8.2036 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 22.69723    0.54101  41.954   <2e-16 ***
## l_OFC_fvo    0.01565    0.65450   0.024    0.981    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.108 on 40 degrees of freedom
## Multiple R-squared:  1.429e-05,  Adjusted R-squared:  -0.02499 
## F-statistic: 0.0005716 on 1 and 40 DF,  p-value: 0.981
m1<-lm(BMI ~ wagnerBalance_fvo, data = indiff)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ wagnerBalance_fvo, data = indiff)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1285 -2.3274 -0.6148  1.7344  8.2128 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       22.70354    0.47963   47.34   <2e-16 ***
## wagnerBalance_fvo -0.01622    0.40757   -0.04    0.968    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.108 on 40 degrees of freedom
## Multiple R-squared:  3.96e-05,   Adjusted R-squared:  -0.02496 
## F-statistic: 0.001584 on 1 and 40 DF,  p-value: 0.9684
m1<-lm(BMI ~ balanceScore_fvo +  rslIFG_lOFC, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ balanceScore_fvo + rslIFG_lOFC, data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6261 -1.6191 -0.3282  1.7995  3.7438 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       21.8668     0.3879  56.373   <2e-16 ***
## balanceScore_fvo   0.6335     0.4953   1.279    0.210    
## rslIFG_lOFC        3.2134     2.1012   1.529    0.136    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.209 on 31 degrees of freedom
## Multiple R-squared:  0.1104, Adjusted R-squared:  0.05296 
## F-statistic: 1.923 on 2 and 31 DF,  p-value: 0.1632
m1<-lm(BMI ~ wagnerBalance_fvo + rslIFG_lOFC, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ wagnerBalance_fvo + rslIFG_lOFC, data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4111 -2.1224 -0.3066  1.9163  3.7632 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        21.7900     0.3933  55.403   <2e-16 ***
## wagnerBalance_fvo   0.4993     0.3834   1.302   0.2024    
## rslIFG_lOFC         4.3526     2.3012   1.891   0.0679 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.207 on 31 degrees of freedom
## Multiple R-squared:  0.112,  Adjusted R-squared:  0.0547 
## F-statistic: 1.955 on 2 and 31 DF,  p-value: 0.1587
m1<-lm(BMI ~ balanceScore_fvo +  FA_thr50, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ balanceScore_fvo + FA_thr50, data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5138 -1.8208  0.0724  1.7296  4.3661 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)       15.2697    11.0530   1.381    0.177
## balanceScore_fvo   0.5888     0.5112   1.152    0.258
## FA_thr50          15.7937    25.9466   0.609    0.547
## 
## Residual standard error: 2.278 on 31 degrees of freedom
## Multiple R-squared:  0.05454,    Adjusted R-squared:  -0.00646 
## F-statistic: 0.8941 on 2 and 31 DF,  p-value: 0.4193
m1<-lm(BMI ~ wagnerBalance_fvo + FA_thr50, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ wagnerBalance_fvo + FA_thr50, data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3316 -1.7560  0.0358  1.9520  4.4673 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)        15.0755    11.2871   1.336    0.191
## wagnerBalance_fvo   0.1771     0.3691   0.480    0.635
## FA_thr50           16.2336    26.5026   0.613    0.545
## 
## Residual standard error: 2.317 on 31 degrees of freedom
## Multiple R-squared:  0.02135,    Adjusted R-squared:  -0.04179 
## F-statistic: 0.3381 on 2 and 31 DF,  p-value: 0.7157
m1<-lm(BMI ~ balanceScore_fvo +  rslIFG_lOFC + FA_thr50 , data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ balanceScore_fvo + rslIFG_lOFC + FA_thr50, 
##     data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6035 -1.6765 -0.5412  1.6176  3.7505 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)       12.7287    10.8863   1.169    0.252
## balanceScore_fvo   0.6100     0.4984   1.224    0.231
## rslIFG_lOFC        3.4575     2.1311   1.622    0.115
## FA_thr50          21.4422    25.5279   0.840    0.408
## 
## Residual standard error: 2.22 on 30 degrees of freedom
## Multiple R-squared:  0.1308, Adjusted R-squared:  0.04388 
## F-statistic: 1.505 on 3 and 30 DF,  p-value: 0.2334
m1<-lm(BMI ~ wagnerBalance_fvo + rslIFG_lOFC + FA_thr50, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ wagnerBalance_fvo + rslIFG_lOFC + FA_thr50, 
##     data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3970 -1.8531 -0.4393  1.8393  4.2784 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)        12.6638    10.8731   1.165   0.2533  
## wagnerBalance_fvo   0.4812     0.3859   1.247   0.2220  
## rslIFG_lOFC         4.5552     2.3247   1.959   0.0594 .
## FA_thr50           21.4208    25.5041   0.840   0.4076  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.218 on 30 degrees of freedom
## Multiple R-squared:  0.1324, Adjusted R-squared:  0.04563 
## F-statistic: 1.526 on 3 and 30 DF,  p-value: 0.228
m1<-lm(BMI ~ rslIFG_lOFC + FA_thr50, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = BMI ~ rslIFG_lOFC + FA_thr50, data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1018 -1.8403 -0.6811  1.6666  4.1453 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)   11.992     10.957   1.094    0.282
## rslIFG_lOFC    3.389      2.147   1.578    0.125
## FA_thr50      23.197     25.691   0.903    0.374
## 
## Residual standard error: 2.238 on 31 degrees of freedom
## Multiple R-squared:  0.08741,    Adjusted R-squared:  0.02853 
## F-statistic: 1.485 on 2 and 31 DF,  p-value: 0.2423

Dwell Time Scrap

m1<-lm(zDTDiff ~ wagnerBalance , data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = zDTDiff ~ wagnerBalance, data = indiffrest)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0429 -0.6621  0.1011  0.7253  2.1072 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept)     0.1582     0.1984   0.797    0.431
## wagnerBalance  -0.3416     0.2128  -1.606    0.118
## 
## Residual standard error: 1.076 on 32 degrees of freedom
## Multiple R-squared:  0.07455,    Adjusted R-squared:  0.04563 
## F-statistic: 2.578 on 1 and 32 DF,  p-value: 0.1182
m1<-lm(zDTDiff ~ l_OFC + rslIFG_lOFC, data = indiffrest)
summary(m1)
## 
## Call:
## lm(formula = zDTDiff ~ l_OFC + rslIFG_lOFC, data = indiffrest)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.87858 -0.67461 -0.08071  0.78097  2.03642 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  -0.2749     0.1897  -1.449  0.15750   
## l_OFC         0.8927     0.2810   3.177  0.00336 **
## rslIFG_lOFC   1.5080     0.9245   1.631  0.11299   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9674 on 31 degrees of freedom
## Multiple R-squared:  0.2757, Adjusted R-squared:  0.229 
## F-statistic: 5.901 on 2 and 31 DF,  p-value: 0.006736