PART 3A
titanic.df<-read.csv(paste("Titanic Data.csv",sep=""))
sum(table(titanic.df))
## [1] 889
PART 3B
sum(table(titanic.df[titanic.df$Survived==1,]))
## [1] 340
PART 3C
prop.table(table(titanic.df$Survived))*100
##
## 0 1
## 61.75478 38.24522
PART 3D
a1<-xtabs(~Survived+Pclass,data=titanic.df) #Task 3-d
a1
## Pclass
## Survived 1 2 3
## 0 80 97 372
## 1 134 87 119
PART 3E
a2<-xtabs(~Survived+Pclass,data=titanic.df) #Task 3-e
prop.table(a2,2)*100
## Pclass
## Survived 1 2 3
## 0 37.38318 52.71739 75.76375
## 1 62.61682 47.28261 24.23625
PART 3F
a3<-xtabs(~Sex+Survived+Pclass,data=titanic.df)
ftable(a3)
## Pclass 1 2 3
## Sex Survived
## female 0 3 6 72
## 1 89 70 72
## male 0 77 91 300
## 1 45 17 47
PART 3G
a4<-xtabs(~Survived+Sex,data=titanic.df)
prop.table(a4,1)*100
## Sex
## Survived female male
## 0 14.75410 85.24590
## 1 67.94118 32.05882
PART 3H
a5<-xtabs(~Sex+Survived,data=titanic.df)
prop.table(a5,1)*100
## Survived
## Sex 0 1
## female 25.96154 74.03846
## male 81.10919 18.89081
PART 3I
a6<-prop.table(a5,1)*100
chisq.test(a6)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: a6
## X-squared = 58.934, df = 1, p-value = 1.631e-14