R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Task 2(b)

titanic.df <- read.csv(paste("Titanic Data.csv", sep=""))
View(titanic.df)

Task 3(a) The value of n gives the total number of passengers on board the titanic

library(psych)
describe(titanic.df)
##           vars   n  mean    sd median trimmed   mad min    max  range
## Survived     1 889  0.38  0.49   0.00    0.35  0.00 0.0   1.00   1.00
## Pclass       2 889  2.31  0.83   3.00    2.39  0.00 1.0   3.00   2.00
## Sex*         3 889  1.65  0.48   2.00    1.69  0.00 1.0   2.00   1.00
## Age          4 889 29.65 12.97  29.70   29.22  9.34 0.4  80.00  79.60
## SibSp        5 889  0.52  1.10   0.00    0.27  0.00 0.0   8.00   8.00
## Parch        6 889  0.38  0.81   0.00    0.19  0.00 0.0   6.00   6.00
## Fare         7 889 32.10 49.70  14.45   21.28 10.24 0.0 512.33 512.33
## Embarked*    8 889  2.54  0.79   3.00    2.67  0.00 1.0   3.00   2.00
##            skew kurtosis   se
## Survived   0.48    -1.77 0.02
## Pclass    -0.63    -1.27 0.03
## Sex*      -0.62    -1.61 0.02
## Age        0.43     0.96 0.43
## SibSp      3.68    17.69 0.04
## Parch      2.74     9.66 0.03
## Fare       4.79    33.23 1.67
## Embarked* -1.26    -0.23 0.03

Task 3(b) The value of 1 ie 340 gives the total number of people who survived teh sinking

task <- with(titanic.df, table(Survived))
task 
## Survived
##   0   1 
## 549 340

Task 3(c) The value of 1 ie 38.24522 gives the % of people who survived the sinking

prop.table(task)*100
## Survived
##        0        1 
## 61.75478 38.24522

Task 3(d) The value given in row 2 column 1 gives the number of first class passengers to survive

task1 <- xtabs(~ Survived + Pclass, data=titanic.df)
task1
##         Pclass
## Survived   1   2   3
##        0  80  97 372
##        1 134  87 119

Task 3(e) The value given in row 2 column 1 gives the percentage of first class passengers who survived

prop.table(task1, 2)
##         Pclass
## Survived         1         2         3
##        0 0.3738318 0.5271739 0.7576375
##        1 0.6261682 0.4728261 0.2423625

Task 3(f) The value given in 1st table’s row 2 column 1 gives the number of females from first class who survivd

task2 <- xtabs(~ Survived + Pclass + Sex, data=titanic.df)
task2
## , , Sex = female
## 
##         Pclass
## Survived   1   2   3
##        0   3   6  72
##        1  89  70  72
## 
## , , Sex = male
## 
##         Pclass
## Survived   1   2   3
##        0  77  91 300
##        1  45  17  47

Task 3(g) The value given in row 2 column 1 gives the percentage of survivors who were female

task3 <- xtabs(~ Survived + Sex, data=titanic.df)

prop.table(task3, 1)*100
##         Sex
## Survived   female     male
##        0 14.75410 85.24590
##        1 67.94118 32.05882

Task 3(h) The value given in row 2 column 1 gives the percentage of females who survived

prop.table(task3, 2)*100
##         Sex
## Survived   female     male
##        0 25.96154 81.10919
##        1 74.03846 18.89081

Task 3(i) Chi-Squared test

chisq.test(task3)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  task3
## X-squared = 258.43, df = 1, p-value < 2.2e-16

Since the value of p is less than 0.01, the null hypothesis can be rejected There is a relation between the sex and survival