This is my RMarkdown document to analyze on the Titanic Case.
titanic.df <- read.csv(paste("TitanicData.csv", sep=""))
View(titanic.df)
mytable <- with(titanic.df, table(Survived))
mytable
## Survived
## 0 1
## 549 340
addmargins(mytable)
## Survived
## 0 1 Sum
## 549 340 889
mytable <- with(titanic.df, table(Survived))
mytable
## Survived
## 0 1
## 549 340
prop.table(mytable)*100
## Survived
## 0 1
## 61.75478 38.24522
mytable <- xtabs(~ Pclass+Survived, data=titanic.df)
mytable
## Survived
## Pclass 0 1
## 1 80 134
## 2 97 87
## 3 372 119
margin.table(mytable,1)
## Pclass
## 1 2 3
## 214 184 491
prop.table(mytable, 1)*100
## Survived
## Pclass 0 1
## 1 37.38318 62.61682
## 2 52.71739 47.28261
## 3 75.76375 24.23625
mytable <- xtabs(~ Pclass+Sex+Survived, data=titanic.df)
mytable
## , , Survived = 0
##
## Sex
## Pclass female male
## 1 3 77
## 2 6 91
## 3 72 300
##
## , , Survived = 1
##
## Sex
## Pclass female male
## 1 89 45
## 2 70 17
## 3 72 47
mytable <- xtabs(~ Survived+Sex, data=titanic.df)
mytable
## Sex
## Survived female male
## 0 81 468
## 1 231 109
margin.table(mytable,1)
## Survived
## 0 1
## 549 340
prop.table(mytable, 1)*100
## Sex
## Survived female male
## 0 14.75410 85.24590
## 1 67.94118 32.05882
mytable <- xtabs(~ Sex+Survived, data=titanic.df)
mytable
## Survived
## Sex 0 1
## female 81 231
## male 468 109
margin.table(mytable,1)
## Sex
## female male
## 312 577
prop.table(mytable, 1)*100
## Survived
## Sex 0 1
## female 25.96154 74.03846
## male 81.10919 18.89081
Hypothesis: The proportion of females onboard who survived the sinking of the Titanic was higher than the proportion of males onboard who survived the sinking of the Titanic.
mytable <- xtabs(~Sex+Survived, data=titanic.df)
addmargins(mytable)
## Survived
## Sex 0 1 Sum
## female 81 231 312
## male 468 109 577
## Sum 549 340 889
chisq.test(mytable)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: mytable
## X-squared = 258.43, df = 1, p-value < 2.2e-16
Since the probability is small (p < 0.01), we reject the Null hypothesis.