C14, Page 56
2\(x_1\) + \(x_2\) + 7\(x_3\) - 2\(x_4\) = 4
3\(x_1\)-2\(x_2\) + 11\(x_4\) = 13
\(x_1\) + \(x_2\) + 5\(x_3\) - 3\(x_4\) = 1
A <- matrix(c(2,1,7,-2,3,-2,0,11,1,1,5,-3),byrow =T,nrow=3,ncol=4)
b <- matrix(c(4,13,1),nrow=3,ncol=1)
p <- nrow(A)
U<- cbind(A,b)
U
## [,1] [,2] [,3] [,4] [,5]
## [1,] 2 1 7 -2 4
## [2,] 3 -2 0 11 13
## [3,] 1 1 5 -3 1
#switch 3rd row to 1st row, since 3rd row has pivot 1
a<-U[3,]
U[3,]<-U[1,]
U[1,]<-a
U
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 1 5 -3 1
## [2,] 3 -2 0 11 13
## [3,] 2 1 7 -2 4
#make all the number under pivot as 0
U[2,]<-U[2,]-U[1,]*(U[2,1]/U[1,1])
U[3,]<-U[3,]-U[1,]*(U[3,1]/U[1,1])
U
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 1 5 -3 1
## [2,] 0 -5 -15 20 10
## [3,] 0 -1 -3 4 2
#3rd row * (-1), then switch to 2nd row
U[3,]<-U[3,]*-1
a<-U[3,]
U[3,]<-U[2,]
U[2,]<-a
U
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 1 5 -3 1
## [2,] 0 1 3 -4 -2
## [3,] 0 -5 -15 20 10
#make all the number under pivot as 0
U[3,]<-U[3,]-U[2,]*(U[3,2]/U[2,2])
U
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 1 5 -3 1
## [2,] 0 1 3 -4 -2
## [3,] 0 0 0 0 0
Conclusion: There are infinity solutions for this matrix. The result is reduced row-echelon form with last row as zero row, which means there are two free varialbes in the solutions with any value.