The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignmenet on Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.data("anscombe")
data <-anscombe
data
## x1 x2 x3 x4 y1 y2 y3 y4
## 1 10 10 10 8 8.04 9.14 7.46 6.58
## 2 8 8 8 8 6.95 8.14 6.77 5.76
## 3 13 13 13 8 7.58 8.74 12.74 7.71
## 4 9 9 9 8 8.81 8.77 7.11 8.84
## 5 11 11 11 8 8.33 9.26 7.81 8.47
## 6 14 14 14 8 9.96 8.10 8.84 7.04
## 7 6 6 6 8 7.24 6.13 6.08 5.25
## 8 4 4 4 19 4.26 3.10 5.39 12.50
## 9 12 12 12 8 10.84 9.13 8.15 5.56
## 10 7 7 7 8 4.82 7.26 6.42 7.91
## 11 5 5 5 8 5.68 4.74 5.73 6.89
fBasics() package!)mean(data$x1)
## [1] 9
mean(data$x2)
## [1] 9
mean(data$x3)
## [1] 9
mean(data$x4)
## [1] 9
mean(data$y1)
## [1] 7.500909
mean(data$y2)
## [1] 7.500909
mean(data$y3)
## [1] 7.5
mean(data$y4)
## [1] 7.500909
var(data$x1)
## [1] 11
var(data$x2)
## [1] 11
var(data$x3)
## [1] 11
var(data$x4)
## [1] 11
var(data$y1)
## [1] 4.127269
var(data$y2)
## [1] 4.127629
var(data$y3)
## [1] 4.12262
var(data$y4)
## [1] 4.123249
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
cor(data)
## x1 x2 x3 x4 y1 y2
## x1 1.0000000 1.0000000 1.0000000 -0.5000000 0.8164205 0.8162365
## x2 1.0000000 1.0000000 1.0000000 -0.5000000 0.8164205 0.8162365
## x3 1.0000000 1.0000000 1.0000000 -0.5000000 0.8164205 0.8162365
## x4 -0.5000000 -0.5000000 -0.5000000 1.0000000 -0.5290927 -0.7184365
## y1 0.8164205 0.8164205 0.8164205 -0.5290927 1.0000000 0.7500054
## y2 0.8162365 0.8162365 0.8162365 -0.7184365 0.7500054 1.0000000
## y3 0.8162867 0.8162867 0.8162867 -0.3446610 0.4687167 0.5879193
## y4 -0.3140467 -0.3140467 -0.3140467 0.8165214 -0.4891162 -0.4780949
## y3 y4
## x1 0.8162867 -0.3140467
## x2 0.8162867 -0.3140467
## x3 0.8162867 -0.3140467
## x4 -0.3446610 0.8165214
## y1 0.4687167 -0.4891162
## y2 0.5879193 -0.4780949
## y3 1.0000000 -0.1554718
## y4 -0.1554718 1.0000000
plot(data$x1, data$y1, col="red", main ="Scatter Plot of Pair 1")
plot(data$x2, data$y2, col="blue", main ="Scatter Plot of Pair 2")
plot(data$x3, data$y3, col="dark green", main ="Scatter Plot of Pair 3")
plot(data$x4, data$y4, col="brown", main ="Scatter Plot of Pair 4")
par(mfrow=c(2,2))
plot(data$x1, data$y1, col="red", main ="Scatter Plot of Pair 1", pch=16)
plot(data$x2, data$y2, col="blue", main ="Scatter Plot of Pair 2", pch=16)
plot(data$x3, data$y3, col="dark green", main ="Scatter Plot of Pair 3", pch=16)
plot(data$x4, data$y4, col="brown", main ="Scatter Plot of Pair 4", pch=16)
lm() function.fit1 <-lm(y1~x1, data=data)
summary(fit1)
##
## Call:
## lm(formula = y1 ~ x1, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0001 1.1247 2.667 0.02573 *
## x1 0.5001 0.1179 4.241 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
fit2 <-lm(y2~x2, data=data)
summary (fit2)
##
## Call:
## lm(formula = y2 ~ x2, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9009 -0.7609 0.1291 0.9491 1.2691
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.001 1.125 2.667 0.02576 *
## x2 0.500 0.118 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
fit3 <-lm(y3~x3, data=data)
summary(fit3)
##
## Call:
## lm(formula = y3 ~ x3, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1586 -0.6146 -0.2303 0.1540 3.2411
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0025 1.1245 2.670 0.02562 *
## x3 0.4997 0.1179 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
fit4 <-lm(y4~x4, data=data)
summary(fit4)
##
## Call:
## lm(formula = y4 ~ x4, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.751 -0.831 0.000 0.809 1.839
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0017 1.1239 2.671 0.02559 *
## x4 0.4999 0.1178 4.243 0.00216 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
## F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
par(mfrow=c(2,2))
plot(data$x1, data$y1, col="red", main ="Scatter Plot of Pair 1", pch=16)
abline(fit1)
plot(data$x2, data$y2, col="blue", main ="Scatter Plot of Pair 2", pch=16)
abline(fit2)
plot(data$x3, data$y3, col="dark green", main ="Scatter Plot of Pair 3", pch=16)
abline(fit3)
plot(data$x4, data$y4, col="brown", main ="Scatter Plot of Pair 4", pch=16)
abline(fit4)
anova(fit1)
Analysis of Variance Table
Response: y1 Df Sum Sq Mean Sq F value Pr(>F)
x1 1 27.510 27.5100 17.99 0.00217 ** Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit2)
Analysis of Variance Table
Response: y2 Df Sum Sq Mean Sq F value Pr(>F)
x2 1 27.500 27.5000 17.966 0.002179 ** Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit3)
Analysis of Variance Table
Response: y3 Df Sum Sq Mean Sq F value Pr(>F)
x3 1 27.470 27.4700 17.972 0.002176 ** Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit4)
Analysis of Variance Table
Response: y4 Df Sum Sq Mean Sq F value Pr(>F)
x4 1 27.490 27.4900 18.003 0.002165 ** Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1