Project Title : Hotel Room Pricing In The Indian Market

Name : Palash Badjatya

E-mail : palash.badjatya01@gmail.com

College : Acropolis Technical Campus

Introduction

Introduction

This project is about the hotel room pricing in the indian market over different cities. It tells you about what affects the pricing system of a hotel room. Like whether the city is a tourist place or whetherit is a weekend that affets the pricing of a hotel room.There are many other things which also affects the pricing of a hotel room like breakfast, swimming pool, any special occasion(like new years eve), etc.

Overview

Overview of the study

The objective of this project is to identify the factors that matter the most. This dataset consistof data from different hoels located in different cities.

Data

Dependent Variable

Alt text

Alt text

External Factors

Alt text

Alt text

Internal Data

Alt text

Alt text

The data cosist of many variables like the city name, population of that city, whether the city is tourist place or not, whether the city is metro city or not, what is the room rent, is it a 5star hotel or not, hotel adress and description, whether there is a near long weekend, what is capacity of the hotel, free breakfast and wifi is included or not, is there any swimming pool for guests or not

hotels.df <- read.csv(paste("Cities42.csv", sep=""))
attach(hotels.df)
head(hotels.df)
##   CityName Population CityRank IsMetroCity IsTouristDestination IsWeekend
## 1   Mumbai   12442373        0           1                    1         1
## 2   Mumbai   12442373        0           1                    1         0
## 3   Mumbai   12442373        0           1                    1         1
## 4   Mumbai   12442373        0           1                    1         1
## 5   Mumbai   12442373        0           1                    1         0
## 6   Mumbai   12442373        0           1                    1         1
##   IsNewYearEve        Date      HotelName RoomRent StarRating Airport
## 1            0 Dec 18 2016 Vivanta by Taj    12375          5      21
## 2            0 Dec 21 2016 Vivanta by Taj    10250          5      21
## 3            0 Dec 24 2016 Vivanta by Taj     9900          5      21
## 4            0 Dec 25 2016 Vivanta by Taj    10350          5      21
## 5            0 Dec 28 2016 Vivanta by Taj    12000          5      21
## 6            1 Dec 31 2016 Vivanta by Taj    11475          5      21
##                                   HotelAddress HotelPincode
## 1 90 Cuffe Parade, Colaba, Mumbai, Maharashtra       400005
## 2 91 Cuffe Parade, Colaba, Mumbai, Maharashtra       400006
## 3 92 Cuffe Parade, Colaba, Mumbai, Maharashtra       400007
## 4 93 Cuffe Parade, Colaba, Mumbai, Maharashtra       400008
## 5 94 Cuffe Parade, Colaba, Mumbai, Maharashtra       400009
## 6 95 Cuffe Parade, Colaba, Mumbai, Maharashtra       400010
##                               HotelDescription FreeWifi FreeBreakfast
## 1 Luxury hotel with spa, near Gateway of India        1             0
## 2 Luxury hotel with spa, near Gateway of India        1             0
## 3 Luxury hotel with spa, near Gateway of India        1             0
## 4 Luxury hotel with spa, near Gateway of India        1             0
## 5 Luxury hotel with spa, near Gateway of India        1             0
## 6 Luxury hotel with spa, near Gateway of India        1             0
##   HotelCapacity HasSwimmingPool
## 1           287               1
## 2           287               1
## 3           287               1
## 4           287               1
## 5           287               1
## 6           287               1
dim(hotels.df)
## [1] 13232    19
library(psych)
describe(hotels.df)
##                      vars     n       mean         sd  median    trimmed
## CityName*               1 13232      18.07      11.72      16      17.29
## Population              2 13232 4416836.87 4258386.00 3046163 4040816.22
## CityRank                3 13232      14.83      13.51       9      13.30
## IsMetroCity             4 13232       0.28       0.45       0       0.23
## IsTouristDestination    5 13232       0.70       0.46       1       0.75
## IsWeekend               6 13232       0.62       0.48       1       0.65
## IsNewYearEve            7 13232       0.12       0.33       0       0.03
## Date*                   8 13232      14.30       2.69      14      14.39
## HotelName*              9 13232     841.19     488.16     827     841.18
## RoomRent               10 13232    5473.99    7333.12    4000    4383.33
## StarRating             11 13232       3.46       0.76       3       3.40
## Airport                12 13232      21.16      22.76      15      16.39
## HotelAddress*          13 13232    1202.53     582.17    1261    1233.25
## HotelPincode           14 13232  397430.26  259837.50  395003  388540.47
## HotelDescription*      15 13224     581.34     363.26     567     575.37
## FreeWifi               16 13232       0.93       0.26       1       1.00
## FreeBreakfast          17 13232       0.65       0.48       1       0.69
## HotelCapacity          18 13232      62.51      76.66      34      46.03
## HasSwimmingPool        19 13232       0.36       0.48       0       0.32
##                             mad      min      max      range  skew
## CityName*                 11.86      1.0       42       41.0  0.48
## Population           3846498.95   8096.0 12442373 12434277.0  0.68
## CityRank                  11.86      0.0       44       44.0  0.69
## IsMetroCity                0.00      0.0        1        1.0  0.96
## IsTouristDestination       0.00      0.0        1        1.0 -0.86
## IsWeekend                  0.00      0.0        1        1.0 -0.51
## IsNewYearEve               0.00      0.0        1        1.0  2.28
## Date*                      2.97      1.0       20       19.0 -0.77
## HotelName*               641.97      1.0     1670     1669.0  0.01
## RoomRent                2653.85    299.0   322500   322201.0 16.75
## StarRating                 0.74      0.0        5        5.0  0.48
## Airport                   11.12      0.2      124      123.8  2.73
## HotelAddress*            668.65      1.0     2108     2107.0 -0.37
## HotelPincode          257975.37 100025.0  7000157  6900132.0  9.99
## HotelDescription*        472.95      1.0     1226     1225.0  0.11
## FreeWifi                   0.00      0.0        1        1.0 -3.25
## FreeBreakfast              0.00      0.0        1        1.0 -0.62
## HotelCapacity             28.17      0.0      600      600.0  2.95
## HasSwimmingPool            0.00      0.0        1        1.0  0.60
##                      kurtosis       se
## CityName*               -0.88     0.10
## Population              -1.08 37019.65
## CityRank                -0.76     0.12
## IsMetroCity             -1.08     0.00
## IsTouristDestination    -1.26     0.00
## IsWeekend               -1.74     0.00
## IsNewYearEve             3.18     0.00
## Date*                    1.92     0.02
## HotelName*              -1.25     4.24
## RoomRent               582.06    63.75
## StarRating               0.25     0.01
## Airport                  7.89     0.20
## HotelAddress*           -0.88     5.06
## HotelPincode           249.76  2258.86
## HotelDescription*       -1.25     3.16
## FreeWifi                 8.57     0.00
## FreeBreakfast           -1.61     0.00
## HotelCapacity           11.39     0.67
## HasSwimmingPool         -1.64     0.00

Data Structure

## 'data.frame':    13232 obs. of  19 variables:
##  $ CityName            : Factor w/ 42 levels "Agra","Ahmedabad",..: 26 26 26 26 26 26 26 26 26 26 ...
##  $ Population          : int  12442373 12442373 12442373 12442373 12442373 12442373 12442373 12442373 12442373 12442373 ...
##  $ CityRank            : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ IsMetroCity         : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ IsTouristDestination: int  1 1 1 1 1 1 1 1 1 1 ...
##  $ IsWeekend           : int  1 0 1 1 0 1 0 1 1 0 ...
##  $ IsNewYearEve        : int  0 0 0 0 0 1 0 0 0 0 ...
##  $ Date                : Factor w/ 20 levels "04-Jan-16","04-Jan-17",..: 11 12 13 14 15 16 17 18 11 12 ...
##  $ HotelName           : Factor w/ 1670 levels "14 Square Amanora",..: 1635 1635 1635 1635 1635 1635 1635 1635 1409 1409 ...
##  $ RoomRent            : int  12375 10250 9900 10350 12000 11475 11220 9225 6800 9350 ...
##  $ StarRating          : num  5 5 5 5 5 5 5 5 4 4 ...
##  $ Airport             : num  21 21 21 21 21 21 21 21 20 20 ...
##  $ HotelAddress        : Factor w/ 2108 levels " H.P. High Court Mall Road, Shimla",..: 925 928 930 933 935 937 940 941 699 746 ...
##  $ HotelPincode        : int  400005 400006 400007 400008 400009 400010 400011 400012 400039 400040 ...
##  $ HotelDescription    : Factor w/ 1226 levels "#NAME?","10 star hotel near Queensroad, Amritsar",..: 1030 1030 1030 1030 1030 1030 1030 1030 1006 1006 ...
##  $ FreeWifi            : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ FreeBreakfast       : int  0 0 0 0 0 0 0 0 1 1 ...
##  $ HotelCapacity       : int  287 287 287 287 287 287 287 287 28 28 ...
##  $ HasSwimmingPool     : int  1 1 1 1 1 1 1 1 0 0 ...

Models

Making a linear model

We assume that We create a model that depicts how the variables effect the Room Rent

Our model will be like y = B0 + B1x1 + B2x2 + B3x3 + E

y - Room Rent (dependent variable). B0 - intercept. B1, B2, B3 . - Beta coefficients for different variables x1, x2, x3. x1, x2, x3 - CityRank, MetroCity, TouristDestination (independent variables). E - error term.

m2 <- lm(RoomRent ~ CityRank + IsMetroCity + IsTouristDestination, data = hotels.df)
summary(m2)
## 
## Call:
## lm(formula = RoomRent ~ CityRank + IsMetroCity + IsTouristDestination, 
##     data = hotels.df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -6239  -2875  -1285   1052 315988 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           4309.432    140.413  30.691  < 2e-16 ***
## CityRank                 3.627      6.393   0.567     0.57    
## IsMetroCity          -1415.327    186.746  -7.579 3.72e-14 ***
## IsTouristDestination  2170.105    157.659  13.765  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7249 on 13228 degrees of freedom
## Multiple R-squared:  0.0231, Adjusted R-squared:  0.02288 
## F-statistic: 104.3 on 3 and 13228 DF,  p-value: < 2.2e-16

Creating a model for Internal Factors

We assume that We create a model that depicts how the variables effect the Room Rent

Our model will be like y = B0 + B1x1 + B2x2 + B3x3.. + E

y - Room Rent (dependent variable). B0 - intercept. B1, B2, B3 . - Beta coefficients for different variables x1, x2, x3. x1, x2, x3 - StarRating, Dist to airport, FreeWifi, etc (independent variables). E - error term.

m3 <- lm(RoomRent ~ StarRating + Airport + FreeWifi + FreeBreakfast + HotelCapacity + HasSwimmingPool, data = hotels.df)
summary(m3)
## 
## Call:
## lm(formula = RoomRent ~ StarRating + Airport + FreeWifi + FreeBreakfast + 
##     HotelCapacity + HasSwimmingPool, data = hotels.df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -10783  -2286   -875    967 310387 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -7455.073    396.215 -18.816   <2e-16 ***
## StarRating       3519.285    111.754  31.491   <2e-16 ***
## Airport            25.627      2.604   9.840   <2e-16 ***
## FreeWifi          227.843    226.177   1.007    0.314    
## FreeBreakfast     -59.313    123.964  -0.478    0.632    
## HotelCapacity     -14.786      1.009 -14.660   <2e-16 ***
## HasSwimmingPool  2714.146    158.681  17.104   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6687 on 13225 degrees of freedom
## Multiple R-squared:  0.1689, Adjusted R-squared:  0.1685 
## F-statistic: 447.9 on 6 and 13225 DF,  p-value: < 2.2e-16

We can clearly see that Free Wifi and Free Breakfast doesn’t significantly effect the room rents as its p-value > 0.05 and Rest factors effects the Roomrent significantly as its p-value < 0.05

Creating a final Model

We assume that We create a model that depicts how the variables effect the Room Rent

Our model will be like y = B0 + B1x1 + B2x2 + B3x3 + E

y - Room Rent (dependent variable). B0 - intercept. B1, B2, B3 . - Beta coefficients for different variables x1, x2, x3. x1, x2, x3 - dates, external factors, internal factors (independent variables). E - error term.

m4 <- lm(RoomRent ~ IsNewYearEve + IsMetroCity + IsTouristDestination + StarRating + Airport + HotelCapacity + HasSwimmingPool, data = hotels.df)
summary(m4)
## 
## Call:
## lm(formula = RoomRent ~ IsNewYearEve + IsMetroCity + IsTouristDestination + 
##     StarRating + Airport + HotelCapacity + HasSwimmingPool, data = hotels.df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -11621  -2342   -706   1039 309463 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -8362.318    351.306 -23.804  < 2e-16 ***
## IsNewYearEve           843.295    174.085   4.844 1.29e-06 ***
## IsMetroCity          -1502.844    137.569 -10.924  < 2e-16 ***
## IsTouristDestination  2074.969    133.499  15.543  < 2e-16 ***
## StarRating            3583.270    110.317  32.482  < 2e-16 ***
## Airport                 11.057      2.699   4.096 4.22e-05 ***
## HotelCapacity          -11.252      1.020 -11.030  < 2e-16 ***
## HasSwimmingPool       2211.800    159.259  13.888  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6609 on 13224 degrees of freedom
## Multiple R-squared:  0.1882, Adjusted R-squared:  0.1878 
## F-statistic:   438 on 7 and 13224 DF,  p-value: < 2.2e-16

Conclusion

Conclusion

As the tests done, We can say that the RoomRent is effected by the followng factors

Room Rent = f(NewYearseve, IsMetroCity, IsTouristDestination, StarRating, Distance from the airport, HotelCapacity and HasSwimmingPool)

  1. StarRating

  2. IsTouristDestination

  3. HotelCapacity

  4. HasSwimmingPool

  5. IsNewYearEve

  6. Airport

  7. IsMetroCity

Appendix

Appendix

One way contingency table

mytable <- with(hotels.df, table(StarRating))
mytable
## StarRating
##    0    1    2  2.5    3  3.2  3.3  3.4  3.5  3.6  3.7  3.8  3.9    4  4.1 
##   16    8  440  632 5953    8   16    8 1752    8   24   16   32 2463   24 
##  4.3  4.4  4.5  4.7  4.8    5 
##   16    8  376    8   16 1408
mytable1 <- with(hotels.df, table(IsMetroCity))
mytable1
## IsMetroCity
##    0    1 
## 9472 3760
mytable2 <- with(hotels.df, table(FreeBreakfast))
mytable2
## FreeBreakfast
##    0    1 
## 4643 8589
mytable3 <- with(hotels.df, table(CityRank))
mytable3
## CityRank
##    0    1    2    3    4    5    6    7    8    9   10   11   12   13   14 
##  712 2048  656  416  536  424  512   80  600  768   32  128   16  136  160 
##   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30 
##  432  448  624  128  264   40  224  336  392   48  160  120  272  104  456 
##   32   33   34   35   36   37   38   39   40   42   43   44 
##   48   56  280   64  136   88  128  136  264  144  328  288
mytable4 <- with(hotels.df, table(IsTouristDestination))
mytable4
## IsTouristDestination
##    0    1 
## 4007 9225

Two way contingency table

mytable <- xtabs(~ FreeBreakfast+StarRating, data=hotels.df)
mytable
##              StarRating
## FreeBreakfast    0    1    2  2.5    3  3.2  3.3  3.4  3.5  3.6  3.7  3.8
##             0   16    0  216  296 1789    0    8    0  661    8    0    8
##             1    0    8  224  336 4164    8    8    8 1091    0   24    8
##              StarRating
## FreeBreakfast  3.9    4  4.1  4.3  4.4  4.5  4.7  4.8    5
##             0   16  783    0   16    0  224    8    0  594
##             1   16 1680   24    0    8  152    0   16  814
mytable1 <- xtabs(~ IsMetroCity+StarRating, data=hotels.df)
mytable1
##            StarRating
## IsMetroCity    0    1    2  2.5    3  3.2  3.3  3.4  3.5  3.6  3.7  3.8
##           0   16    8  344  456 4336    8   16    8 1312    0   24   16
##           1    0    0   96  176 1617    0    0    0  440    8    0    0
##            StarRating
## IsMetroCity  3.9    4  4.1  4.3  4.4  4.5  4.7  4.8    5
##           0   32 1696   24   16    8  288    8   16  840
##           1    0  767    0    0    0   88    0    0  568
mytable2 <- xtabs(~ IsMetroCity+IsTouristDestination, data=hotels.df)
mytable2
##            IsTouristDestination
## IsMetroCity    0    1
##           0 3352 6120
##           1  655 3105

Boxplots

boxplot(hotels.df$CityRank  , horizontal =TRUE,main="Rank of the cities",col = "lightblue" )

boxplot(hotels.df$Population  , horizontal =TRUE, main="Population",col = "yellow" )

boxplot(hotels.df$StarRating ~ hotels.df$FreeBreakfast, horizontal=TRUE,
           ylab="breakfast avalability", xlab="Star ratings", las=1,
           main="Analysis of star rating and breakfast avalability",
           col=c("pink","yellow")
           )

boxplot(hotels.df$RoomRent ~ hotels.df$IsMetroCity, horizontal=TRUE,
           ylab="City(metro=1,other=0)", xlab="Room rent", las=1,
           main="Analysis of type of city and room rent of hotels",
           col=c("red","blue")
           )

Histograms

hist(hotels.df$RoomRent, 
      main="Analysis of room rents of hotels",
      xlab="Rents of room", ylab="Relative frequency",
      breaks=30, col="lightblue", freq=FALSE)

hist(hotels.df$StarRating, 
      main="Analysis of star ratings of hotels",
      xlab="Star ratings", ylab="Relative frequency",
      breaks=30, col="red", freq=FALSE)

hist(hotels.df$Population, main= "Population" ,xlab="Population" ,col = "peachpuff")

hist(hotels.df$HotelCapacity, main = "Capacity of hotels", xlab = "Hotel Capacity", col = "blue")

Scatterplots

library(car) 
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(RoomRent~StarRating,     data=hotels.df,
            spread=FALSE, smoother.args=list(lty=2),
            main="Scatter plot of Star Rating vs Room rent",
            ylab="Room Rent",
            xlab="Star Rating")

scatterplotMatrix(formula = ~ RoomRent + IsWeekend + IsNewYearEve +Airport , data = hotels.df, pch = 16)
## Warning in smoother(x, y, col = col[2], log.x = FALSE, log.y = FALSE,
## spread = spread, : could not fit smooth

## Warning in smoother(x, y, col = col[2], log.x = FALSE, log.y = FALSE,
## spread = spread, : could not fit smooth

library(car)
scatterplot(x = hotels.df$Population , y = hotels.df$CityRank, main="Population Vs City Rank " , xlab="Population", ylab="City rank")

Correlation Matrix

cor(hotels.df[, c(2,3,4,5,6,7,10,11,18)])
##                         Population      CityRank   IsMetroCity
## Population            1.0000000000 -0.8353204432  0.7712260105
## CityRank             -0.8353204432  1.0000000000 -0.5643937903
## IsMetroCity           0.7712260105 -0.5643937903  1.0000000000
## IsTouristDestination -0.0482029722  0.2807134520  0.1763717063
## IsWeekend             0.0115926802 -0.0072564766  0.0018118005
## IsNewYearEve          0.0007332482 -0.0006326444  0.0006464753
## RoomRent             -0.0887280632  0.0939855292 -0.0668397705
## StarRating            0.1341365933 -0.1333810133  0.0776028661
## HotelCapacity         0.2599830516 -0.2561197059  0.1871502153
##                      IsTouristDestination    IsWeekend  IsNewYearEve
## Population                   -0.048202972  0.011592680  0.0007332482
## CityRank                      0.280713452 -0.007256477 -0.0006326444
## IsMetroCity                   0.176371706  0.001811801  0.0006464753
## IsTouristDestination          1.000000000 -0.019481101 -0.0022663884
## IsWeekend                    -0.019481101  1.000000000  0.2923820508
## IsNewYearEve                 -0.002266388  0.292382051  1.0000000000
## RoomRent                      0.122502963  0.004580134  0.0384912269
## StarRating                   -0.040554998  0.006378436  0.0023608970
## HotelCapacity                -0.094356091  0.006306507  0.0013526790
##                          RoomRent   StarRating HotelCapacity
## Population           -0.088728063  0.134136593   0.259983052
## CityRank              0.093985529 -0.133381013  -0.256119706
## IsMetroCity          -0.066839771  0.077602866   0.187150215
## IsTouristDestination  0.122502963 -0.040554998  -0.094356091
## IsWeekend             0.004580134  0.006378436   0.006306507
## IsNewYearEve          0.038491227  0.002360897   0.001352679
## RoomRent              1.000000000  0.369373425   0.157873308
## StarRating            0.369373425  1.000000000   0.637430337
## HotelCapacity         0.157873308  0.637430337   1.000000000

Corrgrams

library(corrgram)
corrgram(hotels.df, lower.panel = panel.shade, upper.panel = panel.pie, text.panel = panel.txt, main = "Corrgram of all  variables")

Correlation tests

cor.test(hotels.df$RoomRent, hotels.df$StarRating)
## 
##  Pearson's product-moment correlation
## 
## data:  hotels.df$RoomRent and hotels.df$StarRating
## t = 45.719, df = 13230, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3545660 0.3839956
## sample estimates:
##       cor 
## 0.3693734
cor.test(hotels.df$RoomRent, hotels.df$IsMetroCity)
## 
##  Pearson's product-moment correlation
## 
## data:  hotels.df$RoomRent and hotels.df$IsMetroCity
## t = -7.7053, df = 13230, p-value = 1.399e-14
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.08378329 -0.04985761
## sample estimates:
##         cor 
## -0.06683977
cor.test(hotels.df$RoomRent, hotels.df$CityRank)
## 
##  Pearson's product-moment correlation
## 
## data:  hotels.df$RoomRent and hotels.df$CityRank
## t = 10.858, df = 13230, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.07707001 0.11084696
## sample estimates:
##        cor 
## 0.09398553
cor.test(hotels.df$RoomRent, hotels.df$IsNewYearEve)
## 
##  Pearson's product-moment correlation
## 
## data:  hotels.df$RoomRent and hotels.df$IsNewYearEve
## t = 4.4306, df = 13230, p-value = 9.472e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.02146637 0.05549377
## sample estimates:
##        cor 
## 0.03849123

T test

Null Hypothesis - Their is no Difference between the Room Rent on new year’s eve and on other days

t.test(hotels.df$RoomRent ~ hotels.df$IsNewYearEve)
## 
##  Welch Two Sample t-test
## 
## data:  hotels.df$RoomRent by hotels.df$IsNewYearEve
## t = -4.1793, df = 2065, p-value = 3.046e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1256.5297  -453.9099
## sample estimates:
## mean in group 0 mean in group 1 
##        5367.606        6222.826

P-Value = 3.046e-05 (<0.05) Which is small enough for Rejecting the Null Hupothesis. Hence there is significant difference between the Room Rent on new year’s eve and on other days

Null Hypothesis - Their is no Difference between the Room Rent where wifi is free and other rooms.

t.test(hotels.df$RoomRent ~ hotels.df$FreeWifi)
## 
##  Welch Two Sample t-test
## 
## data:  hotels.df$RoomRent by hotels.df$FreeWifi
## t = -0.76847, df = 1804.7, p-value = 0.4423
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -360.5977  157.5701
## sample estimates:
## mean in group 0 mean in group 1 
##        5380.004        5481.518

As we can see the P-Value = 0.44 (>0.05) , We Fail To reject the Null Hypothesis. It Shows that Their is No Significant Difference Between the Room Rent where wifi is free and other rooms. Null Hypothesis: Their is no difference in the means of room Rent where free Breakfast is available or not