Reading the raw data into a dataframe
Caps.df <- read.csv(paste("FAO.csv", sep=""))
#View(Caps.df)
dim(Caps.df)
## [1] 21477 63
library(psych)
## Warning: package 'psych' was built under R version 3.4.3
describe(Caps.df)
## vars n mean sd median trimmed mad
## Area.Abbreviation* 1 21477 83.40 48.94 82.00 83.04 63.75
## Area.Code 2 21477 125.45 72.87 120.00 124.66 91.92
## Area* 3 21477 87.38 49.96 87.00 87.32 63.75
## Item.Code 4 21477 2694.21 148.97 2640.00 2685.22 154.19
## Item* 5 21477 56.70 32.90 56.00 56.38 40.03
## Element.Code 6 21477 5211.69 146.82 5142.00 5181.75 0.00
## Element* 7 21477 1.82 0.39 2.00 1.90 0.00
## Unit* 8 21477 1.00 0.00 1.00 1.00 0.00
## latitude 9 21477 20.45 24.63 20.59 21.67 27.40
## longitude 10 21477 15.79 66.01 19.15 15.27 42.37
## Y1961 11 17938 195.26 1864.12 1.00 14.17 1.48
## Y1962 12 17938 200.78 1884.27 1.00 14.89 1.48
## Y1963 13 17938 205.46 1861.17 1.00 15.64 1.48
## Y1964 14 17938 209.93 1862.00 1.00 16.31 1.48
## Y1965 15 17938 217.56 2014.93 1.00 17.04 1.48
## Y1966 16 17938 225.99 2100.23 1.00 17.79 1.48
## Y1967 17 17938 230.42 2132.24 1.00 18.42 1.48
## Y1968 18 17938 238.42 2189.17 2.00 18.96 2.97
## Y1969 19 17938 244.34 2266.96 2.00 19.65 2.97
## Y1970 20 17938 250.26 2322.97 2.00 20.52 2.97
## Y1971 21 17938 254.24 2372.63 2.00 21.28 2.97
## Y1972 22 17938 257.45 2421.96 2.00 21.65 2.97
## Y1973 23 17938 267.32 2528.04 2.00 22.16 2.97
## Y1974 24 17938 267.13 2365.41 2.00 23.02 2.97
## Y1975 25 17938 274.44 2464.38 2.00 23.81 2.97
## Y1976 26 17938 276.57 2427.37 2.00 24.71 2.97
## Y1977 27 17938 285.96 2555.25 2.00 25.48 2.97
## Y1978 28 17938 299.79 2757.47 2.00 26.54 2.97
## Y1979 29 17938 305.84 2768.37 2.00 27.34 2.97
## Y1980 30 17938 305.67 2730.43 3.00 28.09 4.45
## Y1981 31 17938 311.66 2774.27 3.00 28.90 4.45
## Y1982 32 17938 320.98 2931.21 3.00 29.91 4.45
## Y1983 33 17938 326.91 3002.93 3.00 30.25 4.45
## Y1984 34 17938 339.56 3101.63 3.00 31.40 4.45
## Y1985 35 17938 344.35 3094.24 3.00 32.28 4.45
## Y1986 36 17938 351.74 3231.48 3.00 33.12 4.45
## Y1987 37 17938 361.94 3312.10 3.00 34.26 4.45
## Y1988 38 17938 363.98 3236.74 4.00 35.47 5.93
## Y1989 39 17938 372.35 3349.60 4.00 36.12 5.93
## Y1990 40 18062 375.42 3422.82 4.00 36.26 5.93
## Y1991 41 18062 379.45 3453.92 4.00 36.51 5.93
## Y1992 42 20490 386.01 3509.29 4.00 37.48 5.93
## Y1993 43 20865 389.31 3555.65 4.00 38.44 5.93
## Y1994 44 20865 397.08 3714.32 4.00 38.91 5.93
## Y1995 45 20865 404.49 3754.28 4.00 39.62 5.93
## Y1996 46 20865 415.26 3962.39 5.00 40.64 7.41
## Y1997 47 20865 421.62 4036.10 5.00 41.33 7.41
## Y1998 48 20865 428.88 4149.06 5.00 41.69 7.41
## Y1999 49 20865 441.68 4340.53 5.00 43.35 7.41
## Y2000 50 21128 451.77 4649.58 5.00 44.28 7.41
## Y2001 51 21128 458.72 4751.60 6.00 45.35 8.90
## Y2002 52 21128 465.46 4868.63 6.00 46.24 8.90
## Y2003 53 21128 472.69 4911.22 6.00 47.43 8.90
## Y2004 54 21128 486.69 5001.78 6.00 49.46 8.90
## Y2005 55 21128 493.15 5100.06 6.00 50.37 8.90
## Y2006 56 21373 496.32 5134.82 7.00 50.90 10.38
## Y2007 57 21373 508.48 5298.94 7.00 52.48 10.38
## Y2008 58 21373 522.84 5496.70 7.00 53.32 10.38
## Y2009 59 21373 524.58 5545.94 7.00 54.03 10.38
## Y2010 60 21373 535.49 5721.09 7.00 54.82 10.38
## Y2011 61 21373 553.40 5883.07 8.00 56.52 11.86
## Y2012 62 21477 560.57 6047.95 8.00 57.50 11.86
## Y2013 63 21477 575.56 6218.38 8.00 59.31 11.86
## min max range skew kurtosis se
## Area.Abbreviation* 1.0 169.00 168.00 0.05 -1.23 0.33
## Area.Code 1.0 276.00 275.00 0.10 -1.05 0.50
## Area* 1.0 174.00 173.00 0.01 -1.19 0.34
## Item.Code 2511.0 2961.00 450.00 0.49 -1.20 1.02
## Item* 1.0 115.00 114.00 0.06 -1.15 0.22
## Element.Code 5142.0 5521.00 379.00 1.63 0.66 1.00
## Element* 1.0 2.00 1.00 -1.63 0.66 0.00
## Unit* 1.0 1.00 0.00 NaN NaN 0.00
## latitude -40.9 64.96 105.86 -0.36 -0.59 0.17
## longitude -172.1 179.41 351.51 -0.05 0.10 0.45
## Y1961 0.0 112227.00 112227.00 32.37 1401.06 13.92
## Y1962 0.0 109130.00 109130.00 31.41 1311.22 14.07
## Y1963 0.0 106356.00 106356.00 29.98 1219.00 13.90
## Y1964 0.0 104234.00 104234.00 29.52 1190.87 13.90
## Y1965 0.0 119378.00 119378.00 32.04 1385.12 15.04
## Y1966 0.0 118495.00 118495.00 31.46 1311.73 15.68
## Y1967 0.0 118725.00 118725.00 31.25 1290.40 15.92
## Y1968 0.0 127512.00 127512.00 31.40 1329.87 16.35
## Y1969 0.0 134937.00 134937.00 32.46 1414.27 16.93
## Y1970 0.0 131871.00 131871.00 32.11 1360.62 17.34
## Y1971 0.0 143407.00 143407.00 33.30 1488.43 17.72
## Y1972 0.0 147793.00 147793.00 33.83 1536.66 18.08
## Y1973 0.0 142439.00 142439.00 32.43 1375.90 18.88
## Y1974 0.0 118872.00 118872.00 29.36 1133.29 17.66
## Y1975 0.0 123842.00 123842.00 29.97 1174.50 18.40
## Y1976 0.0 126359.00 126359.00 29.45 1152.38 18.12
## Y1977 0.0 128840.00 128840.00 29.97 1175.07 19.08
## Y1978 0.0 142403.00 142403.00 31.14 1263.39 20.59
## Y1979 0.0 147401.00 147401.00 31.08 1285.98 20.67
## Y1980 0.0 151742.00 151742.00 30.40 1233.71 20.39
## Y1981 0.0 157179.00 157179.00 30.76 1278.62 20.71
## Y1982 0.0 172222.00 172222.00 32.22 1400.17 21.89
## Y1983 0.0 182221.00 182221.00 31.52 1353.80 22.42
## Y1984 0.0 187020.00 187020.00 31.42 1349.02 23.16
## Y1985 0.0 188438.00 188438.00 31.48 1370.92 23.10
## Y1986 0.0 189999.00 189999.00 31.71 1353.56 24.13
## Y1987 0.0 190010.00 190010.00 31.02 1282.64 24.73
## Y1988 0.0 189180.00 189180.00 30.25 1237.33 24.17
## Y1989 0.0 192403.00 192403.00 30.52 1244.33 25.01
## Y1990 0.0 201072.00 201072.00 31.10 1291.35 25.47
## Y1991 0.0 193224.00 193224.00 30.30 1205.59 25.70
## Y1992 0.0 197464.00 197464.00 30.73 1242.22 24.52
## Y1993 0.0 202770.00 202770.00 30.90 1257.42 24.62
## Y1994 0.0 204581.00 204581.00 31.89 1312.62 25.71
## Y1995 0.0 208137.00 208137.00 31.47 1296.31 25.99
## Y1996 0.0 210855.00 210855.00 32.59 1371.73 27.43
## Y1997 0.0 221456.00 221456.00 33.29 1438.83 27.94
## Y1998 0.0 229928.00 229928.00 33.12 1425.17 28.72
## Y1999 0.0 255625.00 255625.00 34.26 1537.56 30.05
## Y2000 0.0 311110.00 311110.00 38.81 2013.96 31.99
## Y2001 0.0 327370.00 327370.00 39.95 2155.74 32.69
## Y2002 0.0 352172.00 352172.00 42.34 2448.74 33.49
## Y2003 0.0 354850.00 354850.00 42.04 2417.89 33.79
## Y2004 0.0 360767.00 360767.00 41.81 2395.99 34.41
## Y2005 0.0 373694.00 373694.00 42.68 2504.09 35.09
## Y2006 0.0 388100.00 388100.00 44.38 2731.14 35.12
## Y2007 0.0 402975.00 402975.00 44.63 2762.91 36.25
## Y2008 0.0 425537.00 425537.00 45.58 2900.74 37.60
## Y2009 0.0 434724.00 434724.00 46.17 2978.46 37.94
## Y2010 0.0 451838.00 451838.00 46.88 3064.53 39.13
## Y2011 0.0 462696.00 462696.00 46.43 3012.93 40.24
## Y2012 -169.0 479028.00 479197.00 47.18 3099.38 41.27
## Y2013 -246.0 489299.00 489545.00 46.56 3018.57 42.43
head(Caps.df)
## Area.Abbreviation Area.Code Area Item.Code
## 1 AFG 2 Afghanistan 2511
## 2 AFG 2 Afghanistan 2805
## 3 AFG 2 Afghanistan 2513
## 4 AFG 2 Afghanistan 2513
## 5 AFG 2 Afghanistan 2514
## 6 AFG 2 Afghanistan 2514
## Item Element.Code Element Unit latitude
## 1 Wheat and products 5142 Food 1000 tonnes 33.94
## 2 Rice (Milled Equivalent) 5142 Food 1000 tonnes 33.94
## 3 Barley and products 5521 Feed 1000 tonnes 33.94
## 4 Barley and products 5142 Food 1000 tonnes 33.94
## 5 Maize and products 5521 Feed 1000 tonnes 33.94
## 6 Maize and products 5142 Food 1000 tonnes 33.94
## longitude Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 Y1967 Y1968 Y1969 Y1970
## 1 67.71 1928 1904 1666 1950 2001 1808 2053 2045 2154 1819
## 2 67.71 183 183 182 220 220 195 231 235 238 213
## 3 67.71 76 76 76 76 76 75 71 72 73 74
## 4 67.71 237 237 237 238 238 237 225 227 230 234
## 5 67.71 210 210 214 216 216 216 235 232 236 200
## 6 67.71 403 403 410 415 415 413 454 448 455 383
## Y1971 Y1972 Y1973 Y1974 Y1975 Y1976 Y1977 Y1978 Y1979 Y1980 Y1981 Y1982
## 1 1963 2215 2310 2335 2434 2512 2282 2454 2443 2129 2133 2068
## 2 205 233 246 246 255 263 235 254 270 259 248 217
## 3 71 70 72 76 77 80 60 65 64 64 60 55
## 4 223 219 225 240 244 255 185 203 198 202 189 174
## 5 201 216 228 231 234 240 228 234 228 226 210 199
## 6 386 416 439 445 451 463 439 451 440 437 407 384
## Y1983 Y1984 Y1985 Y1986 Y1987 Y1988 Y1989 Y1990 Y1991 Y1992 Y1993 Y1994
## 1 1994 1851 1791 1683 2194 1801 1754 1640 1539 1582 1840 1855
## 2 217 197 186 200 193 202 191 199 197 249 218 260
## 3 53 51 48 46 46 47 46 43 43 40 50 46
## 4 167 160 151 145 145 148 145 135 132 120 155 143
## 5 192 182 173 170 154 148 137 144 126 90 141 150
## 6 371 353 334 330 298 287 265 279 245 170 272 289
## Y1995 Y1996 Y1997 Y1998 Y1999 Y2000 Y2001 Y2002 Y2003 Y2004 Y2005 Y2006
## 1 1853 2177 2343 2407 2463 2600 2668 2776 3095 3249 3486 3704
## 2 319 254 326 347 270 372 411 448 460 419 445 546
## 3 41 44 50 48 43 26 29 70 48 58 236 262
## 4 125 138 159 154 141 84 83 122 144 185 43 44
## 5 159 108 90 99 72 35 48 89 63 120 208 233
## 6 310 209 173 192 141 66 93 170 117 231 67 82
## Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013
## 1 4164 4252 4538 4605 4711 4810 4895
## 2 455 490 415 442 476 425 422
## 3 263 230 379 315 203 367 360
## 4 48 62 55 60 72 78 89
## 5 249 247 195 178 191 200 200
## 6 67 69 71 82 73 77 76
mytable <- with(Caps.df, table(Element))
mytable
## Element
## Feed Food
## 3949 17528
mytable <- xtabs(~ Element+Area, data=Caps.df)
mytable
## Area
## Element Afghanistan Albania Algeria Angola Antigua and Barbuda Argentina
## Feed 10 25 22 15 13 24
## Food 73 98 102 94 104 99
## Area
## Element Armenia Australia Austria Azerbaijan Bahamas Bangladesh Barbados
## Feed 35 27 34 28 11 15 17
## Food 98 101 105 96 105 108 104
## Area
## Element Belarus Belgium Belize Benin Bermuda
## Feed 33 35 13 12 10
## Food 98 101 99 105 93
## Area
## Element Bolivia (Plurinational State of) Bosnia and Herzegovina Botswana
## Feed 20 27 16
## Food 102 97 109
## Area
## Element Brazil Brunei Darussalam Bulgaria Burkina Faso Cabo Verde Cambodia
## Feed 29 13 34 11 8 10
## Food 108 107 100 104 98 106
## Area
## Element Cameroon Canada Central African Republic Chad Chile
## Feed 16 34 10 16 26
## Food 109 106 99 87 102
## Area
## Element China, Hong Kong SAR China, Macao SAR China, mainland
## Feed 27 15 39
## Food 106 106 107
## Area
## Element China, Taiwan Province of Colombia Congo Costa Rica Côte d'Ivoire
## Feed 32 27 14 25 9
## Food 109 105 106 104 110
## Area
## Element Croatia Cuba Cyprus Czechia Democratic People's Republic of Korea
## Feed 30 36 29 30 20
## Food 99 101 106 99 77
## Area
## Element Denmark Djibouti Dominica Dominican Republic Ecuador Egypt
## Feed 36 8 17 15 29 27
## Food 103 99 94 97 105 107
## Area
## Element El Salvador Estonia Ethiopia Fiji Finland France French Polynesia
## Feed 24 36 9 20 32 37 21
## Food 106 99 107 105 101 103 100
## Area
## Element Gabon Gambia Georgia Germany Ghana Greece Grenada Guatemala Guinea
## Feed 16 10 35 43 10 41 21 25 12
## Food 104 98 98 104 110 102 99 105 100
## Area
## Element Guinea-Bissau Guyana Haiti Honduras Hungary Iceland India
## Feed 7 20 19 28 39 29 26
## Food 84 99 101 104 103 96 108
## Area
## Element Indonesia Iran (Islamic Republic of) Iraq Ireland Israel Italy
## Feed 21 19 25 35 30 43
## Food 105 101 95 101 105 105
## Area
## Element Jamaica Japan Jordan Kazakhstan Kenya Kiribati Kuwait Kyrgyzstan
## Feed 17 35 21 40 17 8 22 31
## Food 102 108 106 101 110 86 100 93
## Area
## Element Lao People's Democratic Republic Latvia Lebanon Lesotho Liberia
## Feed 16 36 27 6 8
## Food 86 100 102 69 91
## Area
## Element Lithuania Luxembourg Madagascar Malawi Malaysia Maldives Mali
## Feed 42 32 19 16 26 3 12
## Food 98 95 106 104 108 101 104
## Area
## Element Malta Mauritania Mauritius Mexico Mongolia Montenegro Morocco
## Feed 29 11 15 25 16 21 25
## Food 101 105 104 108 98 97 104
## Area
## Element Mozambique Myanmar Namibia Nepal Netherlands New Caledonia
## Feed 10 14 13 11 41 24
## Food 104 98 108 110 100 105
## Area
## Element New Zealand Nicaragua Niger Nigeria Norway Oman Pakistan Panama
## Feed 28 22 15 24 37 22 26 24
## Food 106 107 103 107 103 102 107 106
## Area
## Element Paraguay Peru Philippines Poland Portugal Republic of Korea
## Feed 20 25 34 33 32 27
## Food 102 107 108 103 102 107
## Area
## Element Republic of Moldova Romania Russian Federation Rwanda
## Feed 33 40 35 8
## Food 97 99 102 100
## Area
## Element Saint Kitts and Nevis Saint Lucia Saint Vincent and the Grenadines
## Feed 8 15 14
## Food 91 100 95
## Area
## Element Samoa Sao Tome and Principe Saudi Arabia Senegal Serbia
## Feed 19 6 21 13 29
## Food 89 85 109 107 98
## Area
## Element Sierra Leone Slovakia Slovenia Solomon Islands South Africa Spain
## Feed 11 30 31 9 34 45
## Food 100 100 101 91 106 105
## Area
## Element Sri Lanka Sudan Suriname Swaziland Sweden Switzerland Tajikistan
## Feed 20 10 19 14 36 35 29
## Food 107 94 97 103 106 106 73
## Area
## Element Thailand The former Yugoslav Republic of Macedonia Timor-Leste
## Feed 24 30 9
## Food 107 100 77
## Area
## Element Togo Trinidad and Tobago Tunisia Turkey Turkmenistan Uganda
## Feed 11 17 21 27 24 17
## Food 104 100 105 101 66 110
## Area
## Element Ukraine United Arab Emirates United Kingdom
## Feed 38 29 39
## Food 96 92 104
## Area
## Element United Republic of Tanzania United States of America Uruguay
## Feed 19 36 24
## Food 110 105 100
## Area
## Element Uzbekistan Vanuatu Venezuela (Bolivarian Republic of) Viet Nam
## Feed 32 6 22 16
## Food 91 90 108 93
## Area
## Element Yemen Zambia Zimbabwe
## Feed 13 13 13
## Food 106 107 108
par(mfrow=c(1, 3))
boxplot(Caps.df$Y1961,
main="Production In 1961",
col=c("yellow"),
vertical=TRUE,
xlab="Y1961" )
boxplot(Caps.df$Y1962,
main="Production In 1962",
col=c("yellow"),
vertical=TRUE,
xlab="Y1962" )
boxplot(Caps.df$Y1963,
main="Production In 1963",
col=c("yellow"),
vertical=TRUE,
xlab="Y1963" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1964,
main="Production In 1964",
col=c("yellow"),
vertical=TRUE,
xlab="Y1964" )
boxplot(Caps.df$Y1965,
main="Production In 1965",
col=c("yellow"),
vertical=TRUE,
xlab="Y1965" )
boxplot(Caps.df$Y1966,
main="Production In 1966",
col=c("yellow"),
vertical=TRUE,
xlab="Y1966" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1967,
main="Production In 1967",
col=c("yellow"),
vertical=TRUE,
xlab="Y1967" )
boxplot(Caps.df$Y1968,
main="Production In 1968",
col=c("yellow"),
vertical=TRUE,
xlab="Y1968" )
boxplot(Caps.df$Y1969,
main="Production In 1969",
col=c("yellow"),
vertical=TRUE,
xlab="Y1969" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1970,
main="Production In 1970",
col=c("yellow"),
vertical=TRUE,
xlab="Y1970" )
boxplot(Caps.df$Y1971,
main="Production In 1971",
col=c("yellow"),
vertical=TRUE,
xlab="Y1971" )
boxplot(Caps.df$Y1972,
main="Production In 1972",
col=c("yellow"),
vertical=TRUE,
xlab="Y1972" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1973,
main="Production In 1973",
col=c("yellow"),
vertical=TRUE,
xlab="Y1973" )
boxplot(Caps.df$Y1974,
main="Production In 1974",
col=c("yellow"),
vertical=TRUE,
xlab="Y1974" )
boxplot(Caps.df$Y1975,
main="Production In 1975",
col=c("yellow"),
vertical=TRUE,
xlab="Y1975" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1976,
main="Production In 1976",
col=c("yellow"),
vertical=TRUE,
xlab="Y1976" )
boxplot(Caps.df$Y1977,
main="Production In 1977",
col=c("yellow"),
vertical=TRUE,
xlab="Y1977" )
boxplot(Caps.df$Y1978,
main="Production In 1978",
col=c("yellow"),
vertical=TRUE,
xlab="Y1978" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1979,
main="Production In 1979",
col=c("yellow"),
vertical=TRUE,
xlab="Y1979" )
boxplot(Caps.df$Y1980,
main="Production In 1980",
col=c("yellow"),
vertical=TRUE,
xlab="Y1980" )
boxplot(Caps.df$Y1981,
main="Production In 1981",
col=c("yellow"),
vertical=TRUE,
xlab="Y1981" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1982,
main="Production In 1982",
col=c("yellow"),
vertical=TRUE,
xlab="Y1982" )
boxplot(Caps.df$Y1983,
main="Production In 1983",
col=c("yellow"),
vertical=TRUE,
xlab="Y1983" )
boxplot(Caps.df$Y1984,
main="Production In 1984",
col=c("yellow"),
vertical=TRUE,
xlab="Y1984" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1985,
main="Production In 1985",
col=c("yellow"),
vertical=TRUE,
xlab="Y1964" )
boxplot(Caps.df$Y1986,
main="Production In 1986",
col=c("yellow"),
vertical=TRUE,
xlab="Y1986" )
boxplot(Caps.df$Y1987,
main="Production In 1987",
col=c("yellow"),
vertical=TRUE,
xlab="Y1987" )

par(mfrow=c(1, 2))
boxplot(Caps.df$Y1988,
main="Production In 1988",
col=c("yellow"),
vertical=TRUE,
xlab="Y1988" )
boxplot(Caps.df$Y1990,
main="Production In 1990",
col=c("yellow"),
vertical=TRUE,
xlab="Y1990" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1991,
main="Production In 1991",
col=c("yellow"),
vertical=TRUE,
xlab="Y1991" )
boxplot(Caps.df$Y1992,
main="Production In 1992",
col=c("yellow"),
vertical=TRUE,
xlab="Y1992" )
boxplot(Caps.df$Y1993,
main="Production In 1993",
col=c("yellow"),
vertical=TRUE,
xlab="Y1993" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1994,
main="Production In 1994",
col=c("yellow"),
vertical=TRUE,
xlab="Y1994" )
boxplot(Caps.df$Y1995,
main="Production In 1995",
col=c("yellow"),
vertical=TRUE,
xlab="Y1995" )
boxplot(Caps.df$Y1996,
main="Production In 1996",
col=c("yellow"),
vertical=TRUE,
xlab="Y1996" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1997,
main="Production In 1997",
col=c("yellow"),
vertical=TRUE,
xlab="Y1997" )
boxplot(Caps.df$Y1998,
main="Production In 1998",
col=c("yellow"),
vertical=TRUE,
xlab="Y1998" )
boxplot(Caps.df$Y1999,
main="Production In 1999",
col=c("yellow"),
vertical=TRUE,
xlab="Y1999" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y2000,
main="Production In 2000",
col=c("yellow"),
vertical=TRUE,
xlab="Y2000" )
boxplot(Caps.df$Y2001,
main="Production In 2001",
col=c("yellow"),
vertical=TRUE,
xlab="Y2001" )
boxplot(Caps.df$Y2002,
main="Production In 2002",
col=c("yellow"),
vertical=TRUE,
xlab="Y2002" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y2003,
main="Production In 2003",
col=c("yellow"),
vertical=TRUE,
xlab="Y2003" )
boxplot(Caps.df$Y2004,
main="Production In 2004",
col=c("yellow"),
vertical=TRUE,
xlab="Y2004" )
boxplot(Caps.df$Y2005,
main="Production In 2005",
col=c("yellow"),
vertical=TRUE,
xlab="Y2005" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y2006,
main="Production In 2006",
col=c("yellow"),
vertical=TRUE,
xlab="Y2006" )
boxplot(Caps.df$Y2007,
main="Production In 2008",
col=c("yellow"),
vertical=TRUE,
xlab="Y2008" )
boxplot(Caps.df$Y2009,
main="Production In 2009",
col=c("yellow"),
vertical=TRUE,
xlab="Y2009" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y2010,
main="Production In 2010",
col=c("yellow"),
vertical=TRUE,
xlab="Y2010" )
boxplot(Caps.df$Y2011,
main="Production In 2011",
col=c("yellow"),
vertical=TRUE,
xlab="Y2011" )
boxplot(Caps.df$Y2012,
main="Production In 2012",
col=c("yellow"),
vertical=TRUE,
xlab="Y2012" )

boxplot(Caps.df$Y2013,
main="Production In 2013",
col=c("yellow"),
vertical=TRUE,
xlab="Y2013" )
plot(Caps.df$Element, Caps.df$Y1961,
xlab="Element", ylab="Y1961")
plot(Caps.df$Element, Caps.df$Y2013,
xlab="Element", ylab="2013")

boxplot(Y1961~Element,data=Caps.df,horizontal=TRUE,ylab="Food OR Feed",xlab="Production")
axis(side=2,at=c(1,2),labels = c("Feed","Food"))
hist(Caps.df$Y1961 ,
main="Production in Year 1961",
xlab="Production" )
#Arranging the food production in descending order to get highestfood producing country in the year 1961.
attach(food)
newdata <- food[order(-Y1961),]
head (newdata)
## Area.Abbreviation Area.Code Area Item.Code
## 4240 CHN 41 China, mainland 2907
## 4144 CHN 41 China, mainland 2533
## 9140 IND 100 India 2905
## 4238 CHN 41 China, mainland 2905
## 4250 CHN 41 China, mainland 2918
## 20494 USA 231 United States of America 2848
## Item Element.Code Element Unit latitude
## 4240 Starchy Roots 5142 Food 1000 tonnes 35.86
## 4144 Sweet potatoes 5142 Food 1000 tonnes 35.86
## 9140 Cereals - Excluding Beer 5142 Food 1000 tonnes 20.59
## 4238 Cereals - Excluding Beer 5142 Food 1000 tonnes 35.86
## 4250 Vegetables 5142 Food 1000 tonnes 35.86
## 20494 Milk - Excluding Butter 5142 Food 1000 tonnes 37.09
## longitude Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 Y1967 Y1968 Y1969
## 4240 104.20 74071 75097 66180 58955 75697 85502 84238 83039 90687
## 4144 104.20 64319 66000 57920 50175 65635 75009 73534 72464 79230
## 9140 78.96 63431 68508 66208 70097 66185 70573 77541 77619 80419
## 4238 104.20 59256 66145 74029 81048 88579 93392 93557 93501 93301
## 4250 104.20 52968 49318 43635 39097 41449 40808 41524 43742 45077
## 20494 -95.71 50289 49326 50260 50967 50757 51203 50105 50615 51097
## Y1970 Y1971 Y1972 Y1973 Y1974 Y1975 Y1976 Y1977 Y1978
## 4240 97335 91746 90527 106285 103361 101046 92605 101221 106643
## 4144 84300 79462 77140 90255 89135 87570 81161 87564 91621
## 9140 85402 79236 83283 89011 83944 93623 84205 98428 102904
## 4238 104244 108121 110178 114836 118872 123842 126359 128840 142403
## 4250 36375 40620 37069 41444 41519 42878 42458 44566 49398
## 20494 50953 51728 52566 53138 51668 50813 53143 53532 54115
## Y1979 Y1980 Y1981 Y1982 Y1983 Y1984 Y1985 Y1986 Y1987
## 4240 92699 90914 83511 86397 87305 82582 70293 68165 72810
## 4144 78843 78892 71909 74022 74399 68385 56914 56110 60192
## 9140 97639 100504 105221 104664 119483 117647 115612 120294 126697
## 4238 147401 151742 157179 172222 182221 187020 188438 189999 190010
## 4250 49720 47949 55676 59900 67862 77006 83353 98119 102903
## 20494 55150 54872 55620 57172 58802 59085 61872 62840 64812
## Y1988 Y1989 Y1990 Y1991 Y1992 Y1993 Y1994 Y1995 Y1996
## 4240 67908 67708 78631 77257 76962 82080 77473 84856 78925
## 4144 53457 52927 60230 60377 57135 62384 59531 63273 55554
## 9140 137361 144533 131438 142702 150268 147774 148213 151752 155558
## 4238 189180 192403 201072 193224 197464 202770 204581 208137 210855
## 4250 110505 112335 115743 118523 133090 155981 171463 184812 206540
## 20494 63388 63253 65333 65997 67639 67017 68659 69678 69152
## Y1997 Y1998 Y1999 Y2000 Y2001 Y2002 Y2003 Y2004 Y2005
## 4240 82436 91583 93943 98625 99140 101765 101416 106009 105309
## 4144 48812 50440 54148 53061 54422 52425 51857 50647 50376
## 9140 156366 160755 162620 167346 165306 162715 163169 165749 167463
## 4238 209235 210700 209491 207521 206399 205081 202404 201977 202337
## 4250 221456 229928 255625 311110 327370 352172 354850 360767 373694
## 20494 69395 70016 71557 73112 74753 76332 76422 76008 76887
## Y2006 Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013
## 4240 85157 86491 92753 90151 93641 94671 94969 95208
## 4144 41957 35788 37731 34582 32795 33380 33621 33623
## 9140 172010 177260 181605 179175 184552 184648 181267 185884
## 4238 202349 200735 203218 201290 204167 208701 207802 209038
## 4250 388100 402975 425537 434724 451838 462696 479028 489299
## 20494 76329 78349 77704 79447 78596 78752 81287 81513
# Highest production Of Food in Year 1961 --> China
attach(food)
## The following objects are masked from food (pos = 3):
##
## Area, Area.Abbreviation, Area.Code, Element, Element.Code,
## Item, Item.Code, latitude, longitude, Unit, Y1961, Y1962,
## Y1963, Y1964, Y1965, Y1966, Y1967, Y1968, Y1969, Y1970, Y1971,
## Y1972, Y1973, Y1974, Y1975, Y1976, Y1977, Y1978, Y1979, Y1980,
## Y1981, Y1982, Y1983, Y1984, Y1985, Y1986, Y1987, Y1988, Y1989,
## Y1990, Y1991, Y1992, Y1993, Y1994, Y1995, Y1996, Y1997, Y1998,
## Y1999, Y2000, Y2001, Y2002, Y2003, Y2004, Y2005, Y2006, Y2007,
## Y2008, Y2009, Y2010, Y2011, Y2012, Y2013
newdata <- food[order(-Y2013),]
head(newdata)
## Area.Abbreviation Area.Code Area Item.Code
## 4250 CHN 41 China, mainland 2918
## 4187 CHN 41 China, mainland 2605
## 4238 CHN 41 China, mainland 2905
## 9140 IND 100 India 2905
## 4251 CHN 41 China, mainland 2919
## 9152 IND 100 India 2918
## Item Element.Code Element Unit latitude
## 4250 Vegetables 5142 Food 1000 tonnes 35.86
## 4187 Vegetables, Other 5142 Food 1000 tonnes 35.86
## 4238 Cereals - Excluding Beer 5142 Food 1000 tonnes 35.86
## 9140 Cereals - Excluding Beer 5142 Food 1000 tonnes 20.59
## 4251 Fruits - Excluding Wine 5142 Food 1000 tonnes 35.86
## 9152 Vegetables 5142 Food 1000 tonnes 20.59
## longitude Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 Y1967 Y1968 Y1969
## 4250 104.20 52968 49318 43635 39097 41449 40808 41524 43742 45077
## 4187 104.20 44728 41160 36386 32669 34685 34236 34854 36717 37728
## 4238 104.20 59256 66145 74029 81048 88579 93392 93557 93501 93301
## 9140 78.96 63431 68508 66208 70097 66185 70573 77541 77619 80419
## 4251 104.20 2551 2450 2604 2663 2837 2965 3068 3183 3285
## 9152 78.96 16925 17664 18395 19054 19749 20590 21273 22022 22938
## Y1970 Y1971 Y1972 Y1973 Y1974 Y1975 Y1976 Y1977 Y1978 Y1979
## 4250 36375 40620 37069 41444 41519 42878 42458 44566 49398 49720
## 4187 30575 34157 31171 35066 35077 36252 35826 37557 41436 42003
## 4238 104244 108121 110178 114836 118872 123842 126359 128840 142403 147401
## 9140 85402 79236 83283 89011 83944 93623 84205 98428 102904 97639
## 4251 3217 3297 3836 4509 4491 4651 4729 4911 5604 6029
## 9152 23887 24873 25929 26792 27723 28571 29470 30430 31430 32303
## Y1980 Y1981 Y1982 Y1983 Y1984 Y1985 Y1986 Y1987 Y1988 Y1989
## 4250 47949 55676 59900 67862 77006 83353 98119 102903 110505 112335
## 4187 40278 47454 51314 58986 68033 73729 88358 92925 100127 101761
## 4238 151742 157179 172222 182221 187020 188438 189999 190010 189180 192403
## 9140 100504 105221 104664 119483 117647 115612 120294 126697 137361 144533
## 4251 5776 6665 6511 8110 8428 9962 11657 14468 14279 16006
## 9152 33240 34554 35939 37464 38727 39633 40922 42515 43470 44280
## Y1990 Y1991 Y1992 Y1993 Y1994 Y1995 Y1996 Y1997 Y1998 Y1999
## 4250 115743 118523 133090 155981 171463 184812 206540 221456 229928 255625
## 4187 104353 106348 120635 140753 153779 165620 183886 197828 204909 228507
## 4238 201072 193224 197464 202770 204581 208137 210855 209235 210700 209491
## 9140 131438 142702 150268 147774 148213 151752 155558 156366 160755 162620
## 4251 16443 19126 21085 26682 30870 36887 41112 44888 46667 53727
## 9152 45238 46057 46713 49039 50161 52564 53177 50390 59530 65964
## Y2000 Y2001 Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008 Y2009
## 4250 311110 327370 352172 354850 360767 373694 388100 402975 425537 434724
## 4187 278584 293005 313932 314464 318852 330278 343450 355019 373622 377460
## 4238 207521 206399 205081 202404 201977 202337 202349 200735 203218 201290
## 9140 167346 165306 162715 163169 165749 167463 172010 177260 181605 179175
## 4251 54191 58492 60725 65659 72824 76285 81520 86208 91401 98779
## 9152 67010 72832 63824 72528 60491 65549 74760 80659 83421 82568
## Y2010 Y2011 Y2012 Y2013
## 4250 451838 462696 479028 489299
## 4187 393516 402338 419262 426850
## 4238 204167 208701 207802 209038
## 9140 184552 184648 181267 185884
## 4251 104835 114968 126174 130129
## 9152 91969 98339 104773 111082
mean_1961<-aggregate(Y1961~Area,data=Caps.df,FUN = mean)
mean_2013<-aggregate(Y2013~Area,data=Caps.df,FUN = mean)
attach(mean_1961)
## The following objects are masked from food (pos = 3):
##
## Area, Y1961
## The following objects are masked from food (pos = 4):
##
## Area, Y1961
newdata <- mean_1961[order(-Y1961),]
head(newdata)
## Area Y1961
## 139 United States of America 3967.0000
## 30 China, mainland 3269.0342
## 64 India 2310.1866
## 52 Germany 1447.8844
## 48 France 988.4643
## 108 Poland 959.1324
attach(mean_2013)
## The following object is masked from mean_1961:
##
## Area
## The following objects are masked from food (pos = 4):
##
## Area, Y2013
## The following objects are masked from food (pos = 5):
##
## Area, Y2013
newdata1 <- mean_2013[order(-Y2013),]
head(newdata1)
## Area Y2013
## 35 China, mainland 21857.226
## 74 India 9974.575
## 166 United States of America 6657.014
## 22 Brazil 3211.438
## 130 Russian Federation 2707.394
## 117 Nigeria 2297.122
data<-(mean_2013[1:146,] - mean_1961[1:146,])
## Warning in Ops.factor(left, right): '-' not meaningful for factors
head(data)
## Area Y2013
## 1 NA 162.9638554
## 2 NA 53.3739837
## 3 NA 521.5564516
## 4 NA 401.8807339
## 5 NA 0.2307692
## 6 NA 304.3983740
attach(data)
## The following objects are masked from mean_2013:
##
## Area, Y2013
## The following object is masked from mean_1961:
##
## Area
## The following objects are masked from food (pos = 5):
##
## Area, Y2013
## The following objects are masked from food (pos = 6):
##
## Area, Y2013
newdata2 <- data[order(Y2013),]
head(newdata2)
## Area Y2013
## 139 NA -3767.0079
## 30 NA -3230.6214
## 64 NA -2081.2215
## 52 NA -1383.6151
## 48 NA -986.8517
## 17 NA -782.5017
df = data.frame(Area,newdata2)
df
## Area Area.1 Y2013
## 139 NA NA -3767.0078740
## 30 NA NA -3230.6214025
## 64 NA NA -2081.2215322
## 52 NA NA -1383.6151230
## 48 NA NA -986.8516731
## 17 NA NA -782.5017156
## 108 NA NA -708.9832301
## 70 NA NA -636.6842342
## 72 NA NA -617.7591352
## 65 NA NA -490.9880952
## 134 NA NA -441.9568521
## 101 NA NA -372.8342337
## 137 NA NA -360.3958042
## 24 NA NA -297.0191898
## 103 NA NA -246.1424149
## 143 NA NA -211.5923853
## 89 NA NA -163.1702786
## 7 NA NA -147.5760691
## 39 NA NA -115.7708438
## 110 NA NA -112.7923400
## 47 NA NA -99.8029654
## 135 NA NA -97.6591572
## 10 NA NA -76.8422502
## 68 NA NA -71.7996930
## 106 NA NA -70.3920134
## 96 NA NA -70.1540993
## 38 NA NA -63.1202749
## 43 NA NA -62.0568270
## 93 NA NA -56.9925144
## 128 NA NA -52.1535188
## 92 NA NA -44.0214035
## 23 NA NA -43.2416667
## 53 NA NA -41.6527778
## 142 NA NA -39.2008159
## 95 NA NA -34.9701308
## 102 NA NA -29.1623153
## 122 NA NA -28.4709602
## 133 NA NA -26.8579020
## 60 NA NA -26.1185185
## 66 NA NA -25.4480769
## 123 NA NA -24.9548485
## 69 NA NA -20.1682540
## 31 NA NA -19.3943400
## 13 NA NA -15.5256763
## 44 NA NA -15.3628370
## 26 NA NA -14.9942297
## 81 NA NA -12.7794286
## 73 NA NA -9.5111181
## 19 NA NA -8.4675801
## 138 NA NA -6.4598837
## 99 NA NA -6.2761628
## 132 NA NA -5.8189588
## 105 NA NA -3.5672994
## 34 NA NA -3.5592287
## 86 NA NA -2.2099836
## 91 NA NA -0.7364341
## 58 NA NA -0.4741622
## 5 NA NA 0.2307692
## 18 NA NA 0.5124595
## 16 NA NA 1.1285714
## 136 NA NA 1.9648533
## 113 NA NA 2.9675828
## 11 NA NA 3.4058849
## 55 NA NA 9.3346667
## 21 NA NA 16.8458113
## 59 NA NA 20.7453081
## 90 NA NA 26.0030960
## 119 NA NA 30.5489247
## 27 NA NA 32.0040409
## 140 NA NA 34.2388114
## 61 NA NA 35.5215311
## 83 NA NA 35.8596780
## 20 NA NA 38.9065919
## 121 NA NA 40.9592308
## 111 NA NA 43.1882989
## 115 NA NA 45.9243297
## 87 NA NA 51.4010741
## 2 NA NA 53.3739837
## 71 NA NA 56.2224981
## 67 NA NA 58.4452381
## 94 NA NA 66.5280992
## 141 NA NA 76.8511218
## 33 NA NA 76.9493108
## 114 NA NA 81.6020117
## 41 NA NA 88.1527341
## 118 NA NA 88.8714286
## 88 NA NA 96.9569667
## 56 NA NA 100.8997687
## 78 NA NA 115.0720474
## 32 NA NA 122.3342803
## 100 NA NA 127.2787843
## 79 NA NA 135.0592593
## 146 NA NA 139.0421032
## 50 NA NA 140.1705224
## 25 NA NA 145.3003590
## 116 NA NA 149.7327370
## 49 NA NA 149.9037043
## 131 NA NA 157.1836554
## 1 NA NA 162.9638554
## 42 NA NA 165.7208681
## 9 NA NA 178.5945175
## 46 NA NA 191.8511079
## 126 NA NA 206.1755964
## 97 NA NA 209.1819767
## 15 NA NA 216.4783028
## 36 NA NA 217.6619040
## 98 NA NA 234.0820896
## 40 NA NA 236.2433048
## 45 NA NA 236.8942109
## 107 NA NA 243.1602795
## 28 NA NA 257.0490827
## 129 NA NA 280.3350541
## 14 NA NA 288.2960794
## 77 NA NA 298.0240196
## 6 NA NA 304.3983740
## 8 NA NA 325.6867131
## 84 NA NA 333.4585379
## 112 NA NA 345.5372340
## 85 NA NA 354.5673364
## 4 NA NA 401.8807339
## 63 NA NA 452.8490000
## 144 NA NA 476.6554622
## 54 NA NA 491.8806366
## 3 NA NA 521.5564516
## 109 NA NA 572.3452825
## 127 NA NA 574.9748791
## 37 NA NA 576.1144781
## 124 NA NA 737.9742708
## 125 NA NA 807.2816937
## 29 NA NA 857.2613341
## 145 NA NA 892.4933333
## 12 NA NA 981.7403455
## 80 NA NA 1025.4303849
## 57 NA NA 1155.2339286
## 51 NA NA 1207.4061636
## 76 NA NA 1214.8927596
## 82 NA NA 1293.4005245
## 62 NA NA 1307.4417457
## 120 NA NA 1418.0531057
## 104 NA NA 1569.2648352
## 75 NA NA 2038.3574806
## 117 NA NA 2296.2210385
## 130 NA NA 2702.8127652
## 22 NA NA 3179.2310597
## 74 NA NA 9905.9053355
## 35 NA NA 21816.1251871
newdata3 <- df[order(-Y2013),]
head(newdata3)
## Area Area.1 Y2013
## 95 NA NA -34.97013
## 121 NA NA 40.95923
## 135 NA NA -97.65916
## 29 NA NA 857.26133
## 84 NA NA 333.45854
## 111 NA NA 43.18830