library(haven)
## Warning: package 'haven' was built under R version 3.4.3
Value_Coding <- read_sav("Data/STEM-IE/Final Aggregated Value Coding Dataset Updated 2-1-2018.sav")

Descriptives for all sum measures

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
Value_Coding %>%
    select(V01.01.HighUtility_sum: V08.03.PsychologicalCost_sum) %>%
    psych::describe()
##                                                      vars   n mean   sd
## V01.01.HighUtility_sum                                  1 237 1.39 2.81
## V01.02.LowUtility_sum                                   2 237 0.00 0.00
## V01.03.HighIntrinsic_sum                                3 237 0.76 2.13
## V01.03a.selftranscendentintrinsic_sum                   4 237 0.00 0.06
## V01.04.LowIntrinsic_sum                                 5 237 0.01 0.11
## V01.05.HighAttainment_sum                               6 237 0.04 0.36
## V01.05a.selftranscendentattainment_sum                  7 237 0.07 0.34
## V01.06.LowAttainment_sum                                8 237 0.00 0.00
## V01.07.LowCost_sum                                      9 237 0.00 0.06
## V01.08.HighCost_sum                                    10 237 0.02 0.13
## V02.01.Unsolicited_sum                                 11 237 1.56 2.81
## V02.02.ResponsetoYouth_sum                             12 237 0.65 1.55
## V02.03.ResponsetoOther_sum                             13 237 0.06 0.35
## V02.04.Unclear_sum                                     14 237 0.03 0.18
## V03.01.IndividualYouth_sum                             15 237 0.38 1.14
## V03.02.SmallGroup_sum                                  16 237 0.81 2.33
## V03.03.WholeGroup_sum                                  17 237 1.05 2.51
## V03.04.OtherLeader_sum                                 18 237 0.03 0.18
## V03.05.OtherSTEM_IE_Team_sum                           19 237 0.01 0.09
## V03.06.Unclear_sum                                     20 237 0.01 0.09
## V04.01.WholeClass_sum                                  21 237 1.19 2.64
## V04.02.Leaderself_sum                                  22 237 0.04 0.30
## V04.03.IndividualYouth_sum                             23 237 1.05 2.82
## V04.04.Other_sum                                       24 237 0.02 0.13
## V05.01.Specific_sum                                    25 237 2.26 3.91
## V05.02.General_sum                                     26 237 0.04 0.27
## V06.01.RealLifeNoGoal_sum                              27 237 0.56 1.72
## V06.02.ImpactsForPassiveOutcome_sum                    28 237 0.22 0.99
## V06.03.UsefulForSpecificGoal_sum                       29 237 0.62 1.62
## V07A.01.NaturalPhenomena_sum                           30 237 0.03 0.16
## V07A.02.ConceptInSummerProgram_sum                     31 237 0.17 1.10
## V07A.03.AcademicYearClass_sum                          32 237 0.00 0.00
## V07A.04.Routine_sum                                    33 237 0.20 0.87
## V07A.05.AdvancesInScienceHealthTech_sum                34 237 0.02 0.27
## V07A.06.GeneralKnowledgeUnderstandingOfPhenomena_sum   35 237 0.06 0.53
## V07B.07.Job_sum                                        36 237 0.05 0.35
## V07B.08.FutureEducation_sum                            37 237 0.00 0.06
## V07B.09.HealthSafetyWellbeing_sum                      38 237 0.01 0.19
## V07B.10.Hobby_sum                                      39 237 0.00 0.06
## V07B.11.Relationships_sum                              40 237 0.00 0.00
## V07C.12.LocalProblemInProgram_sum                      41 237 0.16 0.69
## V07C.13.ProgramGoalToHelpOthersORCommunity_sum         42 237 0.09 0.50
## V07C.14.GlobalProblemInSpecificEvent_sum               43 237 0.01 0.11
## V07C.15.AdvancingSocietyWorld_sum                      44 237 0.00 0.00
## V07D.16.Grades_sum                                     45 237 0.00 0.06
## V07D.17.FutureSuccessRecognition_sum                   46 237 0.00 0.06
## V08.01.EffortCost_sum                                  47 237 0.02 0.13
## V08.02.OpportunityCost_sum                             48 237 0.00 0.00
## V08.03.PsychologicalCost_sum                           49 237 0.00 0.06
##                                                      median trimmed mad
## V01.01.HighUtility_sum                                    0    0.69   0
## V01.02.LowUtility_sum                                     0    0.00   0
## V01.03.HighIntrinsic_sum                                  0    0.22   0
## V01.03a.selftranscendentintrinsic_sum                     0    0.00   0
## V01.04.LowIntrinsic_sum                                   0    0.00   0
## V01.05.HighAttainment_sum                                 0    0.00   0
## V01.05a.selftranscendentattainment_sum                    0    0.00   0
## V01.06.LowAttainment_sum                                  0    0.00   0
## V01.07.LowCost_sum                                        0    0.00   0
## V01.08.HighCost_sum                                       0    0.00   0
## V02.01.Unsolicited_sum                                    0    0.91   0
## V02.02.ResponsetoYouth_sum                                0    0.26   0
## V02.03.ResponsetoOther_sum                                0    0.00   0
## V02.04.Unclear_sum                                        0    0.00   0
## V03.01.IndividualYouth_sum                                0    0.07   0
## V03.02.SmallGroup_sum                                     0    0.21   0
## V03.03.WholeGroup_sum                                     0    0.39   0
## V03.04.OtherLeader_sum                                    0    0.00   0
## V03.05.OtherSTEM_IE_Team_sum                              0    0.00   0
## V03.06.Unclear_sum                                        0    0.00   0
## V04.01.WholeClass_sum                                     0    0.52   0
## V04.02.Leaderself_sum                                     0    0.00   0
## V04.03.IndividualYouth_sum                                0    0.34   0
## V04.04.Other_sum                                          0    0.00   0
## V05.01.Specific_sum                                       0    1.34   0
## V05.02.General_sum                                        0    0.00   0
## V06.01.RealLifeNoGoal_sum                                 0    0.11   0
## V06.02.ImpactsForPassiveOutcome_sum                       0    0.00   0
## V06.03.UsefulForSpecificGoal_sum                          0    0.23   0
## V07A.01.NaturalPhenomena_sum                              0    0.00   0
## V07A.02.ConceptInSummerProgram_sum                        0    0.00   0
## V07A.03.AcademicYearClass_sum                             0    0.00   0
## V07A.04.Routine_sum                                       0    0.00   0
## V07A.05.AdvancesInScienceHealthTech_sum                   0    0.00   0
## V07A.06.GeneralKnowledgeUnderstandingOfPhenomena_sum      0    0.00   0
## V07B.07.Job_sum                                           0    0.00   0
## V07B.08.FutureEducation_sum                               0    0.00   0
## V07B.09.HealthSafetyWellbeing_sum                         0    0.00   0
## V07B.10.Hobby_sum                                         0    0.00   0
## V07B.11.Relationships_sum                                 0    0.00   0
## V07C.12.LocalProblemInProgram_sum                         0    0.00   0
## V07C.13.ProgramGoalToHelpOthersORCommunity_sum            0    0.00   0
## V07C.14.GlobalProblemInSpecificEvent_sum                  0    0.00   0
## V07C.15.AdvancingSocietyWorld_sum                         0    0.00   0
## V07D.16.Grades_sum                                        0    0.00   0
## V07D.17.FutureSuccessRecognition_sum                      0    0.00   0
## V08.01.EffortCost_sum                                     0    0.00   0
## V08.02.OpportunityCost_sum                                0    0.00   0
## V08.03.PsychologicalCost_sum                              0    0.00   0
##                                                      min max range  skew
## V01.01.HighUtility_sum                                 0  16    16  2.75
## V01.02.LowUtility_sum                                  0   0     0   NaN
## V01.03.HighIntrinsic_sum                               0  17    17  4.24
## V01.03a.selftranscendentintrinsic_sum                  0   1     1 15.20
## V01.04.LowIntrinsic_sum                                0   1     1  8.66
## V01.05.HighAttainment_sum                              0   5     5 11.85
## V01.05a.selftranscendentattainment_sum                 0   3     3  5.53
## V01.06.LowAttainment_sum                               0   0     0   NaN
## V01.07.LowCost_sum                                     0   1     1 15.20
## V01.08.HighCost_sum                                    0   1     1  7.45
## V02.01.Unsolicited_sum                                 0  17    17  2.61
## V02.02.ResponsetoYouth_sum                             0  11    11  3.52
## V02.03.ResponsetoOther_sum                             0   4     4  7.84
## V02.04.Unclear_sum                                     0   1     1  5.13
## V03.01.IndividualYouth_sum                             0   8     8  3.96
## V03.02.SmallGroup_sum                                  0  17    17  4.22
## V03.03.WholeGroup_sum                                  0  16    16  3.34
## V03.04.OtherLeader_sum                                 0   1     1  5.13
## V03.05.OtherSTEM_IE_Team_sum                           0   1     1 10.68
## V03.06.Unclear_sum                                     0   1     1 10.68
## V04.01.WholeClass_sum                                  0  16    16  3.04
## V04.02.Leaderself_sum                                  0   4     4 10.86
## V04.03.IndividualYouth_sum                             0  21    21  3.97
## V04.04.Other_sum                                       0   1     1  7.45
## V05.01.Specific_sum                                    0  22    22  2.21
## V05.02.General_sum                                     0   3     3  8.34
## V06.01.RealLifeNoGoal_sum                              0  13    13  4.21
## V06.02.ImpactsForPassiveOutcome_sum                    0   8     8  5.85
## V06.03.UsefulForSpecificGoal_sum                       0  16    16  4.88
## V07A.01.NaturalPhenomena_sum                           0   1     1  6.01
## V07A.02.ConceptInSummerProgram_sum                     0  15    15 10.98
## V07A.03.AcademicYearClass_sum                          0   0     0   NaN
## V07A.04.Routine_sum                                    0   8     8  5.85
## V07A.05.AdvancesInScienceHealthTech_sum                0   4     4 14.08
## V07A.06.GeneralKnowledgeUnderstandingOfPhenomena_sum   0   7     7 10.89
## V07B.07.Job_sum                                        0   4     4  8.17
## V07B.08.FutureEducation_sum                            0   1     1 15.20
## V07B.09.HealthSafetyWellbeing_sum                      0   3     3 15.20
## V07B.10.Hobby_sum                                      0   1     1 15.20
## V07B.11.Relationships_sum                              0   0     0   NaN
## V07C.12.LocalProblemInProgram_sum                      0   7     7  6.30
## V07C.13.ProgramGoalToHelpOthersORCommunity_sum         0   4     4  5.70
## V07C.14.GlobalProblemInSpecificEvent_sum               0   1     1  8.66
## V07C.15.AdvancingSocietyWorld_sum                      0   0     0   NaN
## V07D.16.Grades_sum                                     0   1     1 15.20
## V07D.17.FutureSuccessRecognition_sum                   0   1     1 15.20
## V08.01.EffortCost_sum                                  0   1     1  7.45
## V08.02.OpportunityCost_sum                             0   0     0   NaN
## V08.03.PsychologicalCost_sum                           0   1     1 15.20
##                                                      kurtosis   se
## V01.01.HighUtility_sum                                   8.06 0.18
## V01.02.LowUtility_sum                                     NaN 0.00
## V01.03.HighIntrinsic_sum                                21.82 0.14
## V01.03a.selftranscendentintrinsic_sum                  230.03 0.00
## V01.04.LowIntrinsic_sum                                 73.36 0.01
## V01.05.HighAttainment_sum                              152.71 0.02
## V01.05a.selftranscendentattainment_sum                  33.83 0.02
## V01.06.LowAttainment_sum                                  NaN 0.00
## V01.07.LowCost_sum                                     230.03 0.00
## V01.08.HighCost_sum                                     53.78 0.01
## V02.01.Unsolicited_sum                                   8.11 0.18
## V02.02.ResponsetoYouth_sum                              15.25 0.10
## V02.03.ResponsetoOther_sum                              72.74 0.02
## V02.04.Unclear_sum                                      24.43 0.01
## V03.01.IndividualYouth_sum                              18.16 0.07
## V03.02.SmallGroup_sum                                   20.76 0.15
## V03.03.WholeGroup_sum                                   12.78 0.16
## V03.04.OtherLeader_sum                                  24.43 0.01
## V03.05.OtherSTEM_IE_Team_sum                           112.53 0.01
## V03.06.Unclear_sum                                     112.53 0.01
## V04.01.WholeClass_sum                                   10.21 0.17
## V04.02.Leaderself_sum                                  135.05 0.02
## V04.03.IndividualYouth_sum                              18.52 0.18
## V04.04.Other_sum                                        53.78 0.01
## V05.01.Specific_sum                                      4.89 0.25
## V05.02.General_sum                                      77.64 0.02
## V06.01.RealLifeNoGoal_sum                               19.93 0.11
## V06.02.ImpactsForPassiveOutcome_sum                     37.02 0.06
## V06.03.UsefulForSpecificGoal_sum                        35.08 0.11
## V07A.01.NaturalPhenomena_sum                            34.21 0.01
## V07A.02.ConceptInSummerProgram_sum                     139.61 0.07
## V07A.03.AcademicYearClass_sum                             NaN 0.00
## V07A.04.Routine_sum                                     39.46 0.06
## V07A.05.AdvancesInScienceHealthTech_sum                204.12 0.02
## V07A.06.GeneralKnowledgeUnderstandingOfPhenomena_sum   131.12 0.03
## V07B.07.Job_sum                                         77.73 0.02
## V07B.08.FutureEducation_sum                            230.03 0.00
## V07B.09.HealthSafetyWellbeing_sum                      230.03 0.01
## V07B.10.Hobby_sum                                      230.03 0.00
## V07B.11.Relationships_sum                                 NaN 0.00
## V07C.12.LocalProblemInProgram_sum                       48.42 0.04
## V07C.13.ProgramGoalToHelpOthersORCommunity_sum          32.73 0.03
## V07C.14.GlobalProblemInSpecificEvent_sum                73.36 0.01
## V07C.15.AdvancingSocietyWorld_sum                         NaN 0.00
## V07D.16.Grades_sum                                     230.03 0.00
## V07D.17.FutureSuccessRecognition_sum                   230.03 0.00
## V08.01.EffortCost_sum                                   53.78 0.01
## V08.02.OpportunityCost_sum                                NaN 0.00
## V08.03.PsychologicalCost_sum                           230.03 0.00

Manova on main value statements, including post-hocs for significant differences

fit<-manova(cbind(V01.01.HighUtility_sum, V01.03.HighIntrinsic_sum, V01.05.HighAttainment_sum, V01.04.LowIntrinsic_sum, V01.07.LowCost_sum, V01.08.HighCost_sum ) ~ as.factor(Value_Coding$SiteIDNumeric), data=Value_Coding)
summary(fit, test="Pillai")
##                                        Df  Pillai approx F num Df den Df
## as.factor(Value_Coding$SiteIDNumeric)   8 0.45922   2.3621     48   1368
## Residuals                             228                               
##                                          Pr(>F)    
## as.factor(Value_Coding$SiteIDNumeric) 7.254e-07 ***
## Residuals                                          
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary.aov(fit)
##  Response V01.01.HighUtility_sum :
##                                        Df  Sum Sq Mean Sq F value
## as.factor(Value_Coding$SiteIDNumeric)   8  224.91 28.1134  3.9094
## Residuals                             228 1639.60  7.1912        
##                                          Pr(>F)    
## as.factor(Value_Coding$SiteIDNumeric) 0.0002399 ***
## Residuals                                          
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response V01.03.HighIntrinsic_sum :
##                                        Df Sum Sq Mean Sq F value    Pr(>F)
## as.factor(Value_Coding$SiteIDNumeric)   8 164.58 20.5731  5.1962 5.636e-06
## Residuals                             228 902.71  3.9592                  
##                                          
## as.factor(Value_Coding$SiteIDNumeric) ***
## Residuals                                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response V01.05.HighAttainment_sum :
##                                        Df  Sum Sq Mean Sq F value  Pr(>F)
## as.factor(Value_Coding$SiteIDNumeric)   8  2.1916 0.27394  2.1941 0.02878
## Residuals                             228 28.4667 0.12485                
##                                        
## as.factor(Value_Coding$SiteIDNumeric) *
## Residuals                              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response V01.04.LowIntrinsic_sum :
##                                        Df  Sum Sq  Mean Sq F value  Pr(>F)
## as.factor(Value_Coding$SiteIDNumeric)   8 0.17869 0.022336  1.8297 0.07257
## Residuals                             228 2.78333 0.012208                
##                                        
## as.factor(Value_Coding$SiteIDNumeric) .
## Residuals                              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response V01.07.LowCost_sum :
##                                        Df  Sum Sq   Mean Sq F value Pr(>F)
## as.factor(Value_Coding$SiteIDNumeric)   8 0.03745 0.0046809  1.1136 0.3548
## Residuals                             228 0.95833 0.0042032               
## 
##  Response V01.08.HighCost_sum :
##                                        Df Sum Sq  Mean Sq F value Pr(>F)
## as.factor(Value_Coding$SiteIDNumeric)   8 0.0996 0.012453  0.7408 0.6554
## Residuals                             228 3.8329 0.016811               
## 
## 21 observations deleted due to missingness
TukeyHSD(aov(Value_Coding$V01.01.HighUtility_sum ~ as.factor(Value_Coding$SiteIDNumeric)))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Value_Coding$V01.01.HighUtility_sum ~ as.factor(Value_Coding$SiteIDNumeric))
## 
## $`as.factor(Value_Coding$SiteIDNumeric)`
##             diff        lwr         upr     p adj
## 2-1  -0.55681818 -3.0357520  1.92211563 0.9987081
## 4-1   0.24271012 -1.8873131  2.37273332 0.9999923
## 5-1   1.16433566 -1.2685717  3.59724308 0.8552165
## 6-1   0.22294372 -2.3392751  2.78516254 0.9999991
## 7-1   0.60984848 -1.8690853  3.08878230 0.9975308
## 8-1   1.41818182 -1.1766026  4.01296625 0.7388307
## 9-1   3.15151515  0.6725813  5.63044897 0.0029235
## 10-1  0.66600791 -1.8385667  3.17058253 0.9957539
## 4-2   0.79952830 -1.2668260  2.86588258 0.9532795
## 5-2   1.72115385 -0.6562102  4.09851786 0.3664493
## 6-2   0.77976190 -1.7297772  3.28930100 0.9879293
## 7-2   1.16666667 -1.2577784  3.59111177 0.8513586
## 8-2   1.97500000 -0.5677795  4.51777947 0.2715821
## 9-2   3.70833333  1.2838882  6.13277843 0.0001034
## 10-2  1.22282609 -1.2278300  3.67348216 0.8238479
## 5-4   0.92162554 -1.0892811  2.93253221 0.8829824
## 6-4  -0.01976640 -2.1853316  2.14579876 1.0000000
## 7-4   0.36713836 -1.6992159  2.43349264 0.9997696
## 8-4   1.17547170 -1.0285277  3.37947111 0.7639438
## 9-4   2.90880503  0.8424508  4.97515931 0.0005365
## 10-4  0.42329779 -1.6737480  2.52034361 0.9994062
## 6-5  -0.94139194 -3.4054764  1.52269249 0.9566016
## 7-5  -0.55448718 -2.9318512  1.82287683 0.9983082
## 8-5   0.25384615 -2.2440836  2.75177591 0.9999969
## 9-5   1.98717949 -0.3901845  4.36454350 0.1850310
## 10-5 -0.49832776 -2.9024161  1.90576060 0.9992787
## 7-6   0.38690476 -2.1226343  2.89644386 0.9999211
## 8-6   1.19523810 -1.4288008  3.81927694 0.8865682
## 9-6   2.92857143  0.4190323  5.43811052 0.0095308
## 10-6  0.44306418 -2.0918062  2.97793452 0.9997962
## 8-7   0.80833333 -1.7344461  3.35111280 0.9860046
## 9-7   2.54166667  0.1172216  4.96611177 0.0319343
## 10-7  0.05615942 -2.3944967  2.50681550 1.0000000
## 9-8   1.73333333 -0.8094461  4.27611280 0.4522984
## 10-8 -0.75217391 -3.3199567  1.81560891 0.9918166
## 10-9 -2.48550725 -4.9361633 -0.03485117 0.0439458
TukeyHSD(aov(Value_Coding$V01.03.HighIntrinsic_sum ~ as.factor(Value_Coding$SiteIDNumeric)))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Value_Coding$V01.03.HighIntrinsic_sum ~ as.factor(Value_Coding$SiteIDNumeric))
## 
## $`as.factor(Value_Coding$SiteIDNumeric)`
##               diff         lwr        upr     p adj
## 2-1   1.250000e-01 -1.71437093  1.9643709 0.9999999
## 4-1   2.245678e-15 -1.58047897  1.5804790 1.0000000
## 5-1   1.000000e+00 -0.80521931  2.8052193 0.7243399
## 6-1   2.523810e+00  0.62264105  4.4249780 0.0014831
## 7-1   4.166667e-01 -1.42270427  2.2560376 0.9986272
## 8-1   4.500000e-01 -1.47533219  2.3753322 0.9982827
## 9-1   1.625000e+00 -0.21437093  3.4643709 0.1312273
## 10-1  1.739130e+00 -0.11926600  3.5975269 0.0868639
## 4-2  -1.250000e-01 -1.65823658  1.4082366 0.9999994
## 5-2   8.750000e-01 -0.88900606  2.6390061 0.8285868
## 6-2   2.398810e+00  0.53672945  4.2608896 0.0023902
## 7-2   2.916667e-01 -1.50727360  2.0906069 0.9998844
## 8-2   3.250000e-01 -1.56174446  2.2117445 0.9998174
## 9-2   1.500000e+00 -0.29894026  3.2989403 0.1876623
## 10-2  1.614130e+00 -0.20425840  3.4325193 0.1271064
## 5-4   1.000000e+00 -0.49209441  2.4920944 0.4766331
## 6-4   2.523810e+00  0.91695839  4.1306607 0.0000578
## 7-4   4.166667e-01 -1.11656991  1.9499032 0.9950708
## 8-4   4.500000e-01 -1.18536938  2.0853694 0.9946325
## 9-4   1.625000e+00  0.09176342  3.1582366 0.0285920
## 10-4  1.739130e+00  0.18312070  3.2951402 0.0160401
## 6-5   1.523810e+00 -0.30454316  3.3521622 0.1881672
## 7-5  -5.833333e-01 -2.34733939  1.1806727 0.9819909
## 8-5  -5.500000e-01 -2.40346594  1.3034659 0.9910813
## 9-5   6.250000e-01 -1.13900606  2.3890061 0.9723353
## 10-5  7.391304e-01 -1.04470511  2.5229660 0.9312329
## 7-6  -2.107143e+00 -3.96922294 -0.2450628 0.0138824
## 8-6  -2.073810e+00 -4.02084851 -0.1267705 0.0271688
## 9-6  -8.988095e-01 -2.76088960  0.9632706 0.8491623
## 10-6 -7.846791e-01 -2.66555497  1.0961968 0.9286077
## 8-7   3.333333e-02 -1.85341113  1.9200778 1.0000000
## 9-7   1.208333e+00 -0.59060693  3.0072736 0.4734467
## 10-7  1.322464e+00 -0.49592506  3.1408526 0.3600823
## 9-8   1.175000e+00 -0.71174446  3.0617445 0.5795205
## 10-8  1.289130e+00 -0.61616654  3.1944274 0.4630021
## 10-9  1.141304e-01 -1.70425840  1.9325193 0.9999999
TukeyHSD(aov(Value_Coding$V01.05.HighAttainment_sum ~ as.factor(Value_Coding$SiteIDNumeric)))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Value_Coding$V01.05.HighAttainment_sum ~ as.factor(Value_Coding$SiteIDNumeric))
## 
## $`as.factor(Value_Coding$SiteIDNumeric)`
##               diff          lwr           upr     p adj
## 2-1   2.838638e-17 -0.326636274  0.3266362735 1.0000000
## 4-1   7.569702e-18 -0.280662128  0.2806621283 1.0000000
## 5-1   5.614196e-17 -0.320571613  0.3205716126 1.0000000
## 6-1   3.333333e-01 -0.004276974  0.6709436410 0.0559798
## 7-1   6.308085e-17 -0.326636274  0.3266362735 1.0000000
## 8-1   1.000000e-01 -0.241901310  0.4419013098 0.9918992
## 9-1  -5.488034e-17 -0.326636274  0.3266362735 1.0000000
## 10-1 -5.488034e-17 -0.330014830  0.3300148298 1.0000000
## 4-2  -2.081668e-17 -0.272272804  0.2722728044 1.0000000
## 5-2   2.775558e-17 -0.313252947  0.3132529467 1.0000000
## 6-2   3.333333e-01  0.002664360  0.6640023062 0.0464876
## 7-2   3.469447e-17 -0.319456578  0.3194565776 1.0000000
## 8-2   1.000000e-01 -0.235048885  0.4350488852 0.9907325
## 9-2  -8.326673e-17 -0.319456578  0.3194565776 1.0000000
## 10-2 -8.326673e-17 -0.322910263  0.3229102626 1.0000000
## 5-4   4.857226e-17 -0.264966760  0.2649667596 1.0000000
## 6-4   3.333333e-01  0.047988026  0.6186786411 0.0094079
## 7-4   5.551115e-17 -0.272272804  0.2722728044 1.0000000
## 8-4   1.000000e-01 -0.190409591  0.3904095909 0.9767917
## 9-4  -6.245005e-17 -0.272272804  0.2722728044 1.0000000
## 10-4 -6.245005e-17 -0.276316870  0.2763168702 1.0000000
## 6-5   3.333333e-01  0.008653686  0.6580129804 0.0391814
## 7-5   6.938894e-18 -0.313252947  0.3132529467 1.0000000
## 8-5   1.000000e-01 -0.229139270  0.4291392701 0.9895781
## 9-5  -1.110223e-16 -0.313252947  0.3132529467 1.0000000
## 10-5 -1.110223e-16 -0.316774275  0.3167742750 1.0000000
## 7-6  -3.333333e-01 -0.664002306 -0.0026643605 0.0464876
## 8-6  -2.333333e-01 -0.579089346  0.1124226790 0.4667243
## 9-6  -3.333333e-01 -0.664002306 -0.0026643605 0.0464876
## 10-6 -3.333333e-01 -0.667340073  0.0006734066 0.0509135
## 8-7   1.000000e-01 -0.235048885  0.4350488852 0.9907325
## 9-7  -1.179612e-16 -0.319456578  0.3194565776 1.0000000
## 10-7 -1.179612e-16 -0.322910263  0.3229102626 1.0000000
## 9-8  -1.000000e-01 -0.435048885  0.2350488852 0.9907325
## 10-8 -1.000000e-01 -0.438343447  0.2383434471 0.9913149
## 10-9  0.000000e+00 -0.322910263  0.3229102626 1.0000000
TukeyHSD(aov(Value_Coding$V01.04.LowIntrinsic_sum ~ as.factor(Value_Coding$SiteIDNumeric)))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Value_Coding$V01.04.LowIntrinsic_sum ~ as.factor(Value_Coding$SiteIDNumeric))
## 
## $`as.factor(Value_Coding$SiteIDNumeric)`
##               diff         lwr         upr     p adj
## 2-1   8.333333e-02 -0.01880264 0.185469303 0.2117781
## 4-1   6.457902e-17 -0.08776030 0.087760304 1.0000000
## 5-1   1.947621e-17 -0.10023961 0.100239609 1.0000000
## 6-1   3.682345e-17 -0.10556744 0.105567442 1.0000000
## 7-1   3.682345e-17 -0.10213597 0.102135969 1.0000000
## 8-1   5.000000e-02 -0.05690920 0.156909197 0.8705693
## 9-1   2.988455e-17 -0.10213597 0.102135969 1.0000000
## 10-1  2.988455e-17 -0.10319241 0.103192411 1.0000000
## 4-2  -8.333333e-02 -0.16847038 0.001803711 0.0603324
## 5-2  -8.333333e-02 -0.18128447 0.014617800 0.1667147
## 6-2  -8.333333e-02 -0.18673029 0.020063622 0.2260465
## 7-2  -8.333333e-02 -0.18322428 0.016557615 0.1871227
## 8-2  -3.333333e-02 -0.13809984 0.071433177 0.9859266
## 9-2  -8.333333e-02 -0.18322428 0.016557615 0.1871227
## 10-2 -8.333333e-02 -0.18430422 0.017637549 0.1988546
## 5-4  -4.510281e-17 -0.08285252 0.082852515 1.0000000
## 6-4  -2.775558e-17 -0.08922469 0.089224688 1.0000000
## 7-4  -2.775558e-17 -0.08513704 0.085137044 1.0000000
## 8-4   5.000000e-02 -0.04080824 0.140808240 0.7309150
## 9-4  -3.469447e-17 -0.08513704 0.085137044 1.0000000
## 10-4 -3.469447e-17 -0.08640158 0.086401584 1.0000000
## 6-5   1.734723e-17 -0.10152415 0.101524151 1.0000000
## 7-5   1.734723e-17 -0.09795113 0.097951134 1.0000000
## 8-5   5.000000e-02 -0.05291863 0.152918632 0.8444632
## 9-5   1.040834e-17 -0.09795113 0.097951134 1.0000000
## 10-5  1.040834e-17 -0.09905222 0.099052219 1.0000000
## 7-6   0.000000e+00 -0.10339695 0.103396955 1.0000000
## 8-6   5.000000e-02 -0.05811452 0.158114525 0.8775664
## 9-6  -6.938894e-18 -0.10339695 0.103396955 1.0000000
## 10-6 -6.938894e-18 -0.10444064 0.104440642 1.0000000
## 8-7   5.000000e-02 -0.05476651 0.154766511 0.8571387
## 9-7  -6.938894e-18 -0.09989095 0.099890949 1.0000000
## 10-7 -6.938894e-18 -0.10097088 0.100970882 1.0000000
## 9-8  -5.000000e-02 -0.15476651 0.054766511 0.8571387
## 10-8 -5.000000e-02 -0.15579669 0.055796688 0.8637594
## 10-9  0.000000e+00 -0.10097088 0.100970882 1.0000000