Experimental SNR determination from ELODIE data-set.

Introduction

Main goal of this short branch is to discuss the concept for signal to noise ratio (SNR) measurement technique.

It is assumed that ELODIE includes 1959 spectra at three different resolutions:

Resolution Code
R=42000 H
R=10000 L
Blue fract. Elo1

[Resolutions considered]

By using the R=10000 resolution two different energy ranges were provided

Band From (A) To (A) By (A)
Blue 3960 4567 0.2
Red 6437 6800 0.2

[Energy Bands considered]

Processing

## Loading required package: magic
## Loading required package: abind

The previously stored data are now reloaded,

The real SNR values have been provided as estimated from the array of sensors device.

After loading the different families of spectra, we calculate their SNR values as per element basis. Then we merged all the SNR estimations with the original one.

Our first estimation for the SNR was based only into the wavelength expression for the spectra with out taking care of any sub-spectra region.

We can depict some relationships depending on each data-set studied

plot(osnr[, 2], osnr[, 3], xlab = "Original SNR", ylab = "Measured SNR", main = "Relationship in case of Elo1 dataset")

plot of chunk unnamed-chunk-3

plot(osnr[, 2], osnr[, 5], xlab = "Original SNR", ylab = "Measured SNR", main = "Relationship in case of L dataset")

plot of chunk unnamed-chunk-4

plot(osnr[, 2], osnr[, 6], xlab = "Original SNR", ylab = "Measured SNR", main = "Relationship in case of H dataset")

plot of chunk unnamed-chunk-5

plot(osnr[, 2], osnr[, 7], xlab = "Original SNR", ylab = "Measured SNR", main = "Relationship in case of local H dataset")

plot of chunk unnamed-chunk-6

Preliminary Conclusions

The biggest conclusion is that it gets a wrong endpoint to associate a SNR value to a signal, to re-sample it and still considers this initial SNR as the good one.

In this way it is possible to realize how, for the biggest density (R=42000) there is a stronger relationship between some fraction of both spectra. Even when there is another set of spectra which are clearly uncorrelated.

osnr[1:20, 1:5]
##        THEORY D.SNR            B.SNR            R.SNR            L.SNR
## 1  00001.fits 163.8 26.2394481246712 26.2394481246712 67.5230554616693
## 2  00002.fits 288.8 361.398612567866 361.398612567866 792.303514579114
## 3  00003.fits 122.7  28.397618881473  28.397618881473 62.1796934990082
## 4  00004.fits 137.3 30.4157467625289 30.4157467625289 71.2549576135147
## 5  00005.fits 101.1 12.8878536655673 12.8878536655673 23.9785331052851
## 6  00006.fits 144.9 15.4119255615594 15.4119255615594 33.3450468407331
## 7  00007.fits 134.8 42.9762981206909 42.9762981206909 194.560573063463
## 8  00008.fits 105.1 45.7922086863789 45.7922086863789 181.996115257925
## 9  00009.fits  80.7 45.1509638488004 45.1509638488004 152.633122795621
## 10 00010.fits 105.5 27.5296749602775 27.5296749602775  56.471982313251
## 11 00011.fits 120.9 17.0562902075109 17.0562902075109 32.7831945448975
## 12 00012.fits  73.6 56.7717060857951 56.7717060857951 126.725619462166
## 13 00013.fits  74.8 21.8103401437975 21.8103401437975 41.5268746926864
## 14 00014.fits 376.0 12.0862434983147 12.0862434983147 18.6512256856873
## 15 00015.fits 224.6 12.0041337176951 12.0041337176951 18.7040553824664
## 16 00016.fits  89.2  81.792193976718  81.792193976718 232.658226130451
## 17 00017.fits  89.2 81.8429836737006 81.8429836737006 232.520209718436
## 18 00018.fits 187.2 22.4364059641126 22.4364059641126 48.3407376451479
## 19 00019.fits  72.1 17.8581165878733 17.8581165878733  36.554377031841
## 20 00020.fits 171.6 25.6097392978677 25.6097392978677 54.4687664192282

Error measurement by band around 5500A, by local FFT around that wavelehgth. Considered windows will be 256, 512, 1024, 2048, 4096

rslH <- 0.05
orgH <- 3900
psnr <- dsnr
for (dlt in seq(8, 12)) {
    cpos <- (5500 - orgH)/rslH
    pas <- 2^(dlt)
    hcsnr <- apply(rd_H[, floor(cpos - pas/2):floor(cpos + pas/2)], 1, fsnr)
    #
    hcsnrd <- as.data.frame(cbind(names(hcsnr), as.numeric(hcsnr)))
    text <- paste(dlt, ".HBND")
    tex2 <- paste(dlt, ".SNR")
    colnames(hcsnrd) <- c(text, tex2)
    psnr <- merge(psnr, hcsnrd, by.x = "THEORY", by.y = text, sort = TRUE, all = TRUE)
}
osnr[1:20, c(1:2, 6:7)]
##        THEORY D.SNR            H.SNR         HBND.SNR
## 1  00001.fits 163.8  80.387641787958 146.180826265927
## 2  00002.fits 288.8 269.266968402058 433.563487691221
## 3  00003.fits 122.7 74.5942053808666 107.186068345025
## 4  00004.fits 137.3 80.8961004913999  160.33534450115
## 5  00005.fits 101.1  27.052446993182 56.0259421167451
## 6  00006.fits 144.9 53.8588479708267 113.892388132789
## 7  00007.fits 134.8 109.360429963834 145.568290600405
## 8  00008.fits 105.1 89.2406366300405 133.000083401165
## 9  00009.fits  80.7 66.0652374631983 107.637620747169
## 10 00010.fits 105.5 63.8270265818283 120.021647122842
## 11 00011.fits 120.9 47.0704185352661 111.200855610754
## 12 00012.fits  73.6 59.7811856481925 99.9694170129399
## 13 00013.fits  74.8 42.4882034728498 74.4647799699079
## 14 00014.fits 376.0 25.1858452094172 61.5033164587391
## 15 00015.fits 224.6 24.9494558706771  59.322966977515
## 16 00016.fits  89.2 82.2784887816092 126.177342416592
## 17 00017.fits  89.2 82.2955728234692 126.147704066393
## 18 00018.fits 187.2 70.6073725324837 147.992434642949
## 19 00019.fits  72.1 36.5030519194865 66.0549595555163
## 20 00020.fits 171.6 76.5534664675584 141.344661262157

Now, it is time to have a look to the different periodograms at different sampling resolutions

psnr[1:20, 1:5]
##        THEORY D.SNR           8 .SNR           9 .SNR          10 .SNR
## 1  00001.fits 163.8 140.038319449606 121.369812987247 125.140809473659
## 2  00002.fits 288.8 418.273353293255 433.502502770795 400.223296517381
## 3  00003.fits 122.7  108.89236030774  108.70521349289 107.360640193766
## 4  00004.fits 137.3 140.517642808016 128.363945564501 133.133057536069
## 5  00005.fits 101.1 46.6842498069175  36.451119878017 40.7973343343739
## 6  00006.fits 144.9 96.5301855458177 85.4436498986788 85.2192022599505
## 7  00007.fits 134.8 144.635136323297  151.12315278166 151.464514561051
## 8  00008.fits 105.1 140.648906158605 141.635116376949 139.768910460531
## 9  00009.fits  80.7 115.220012244607 120.734860286675 115.539911041657
## 10 00010.fits 105.5 105.207116578212 96.7242177854302 97.2370793564668
## 11 00011.fits 120.9 93.3261196335231 66.5550071436699 72.4445408371857
## 12 00012.fits  73.6 102.764083730727 104.716935798403 100.307901539783
## 13 00013.fits  74.8 70.4828155583254 65.7714059377006  65.273153806047
## 14 00014.fits 376.0 52.3766366461237 36.3619128666981 36.5105702237634
## 15 00015.fits 224.6 49.6456688450098 36.0562418031433 35.4126156206947
## 16 00016.fits  89.2  133.14393160961 131.010693741214 128.685865623536
## 17 00017.fits  89.2 133.174868218658 131.019132336857 128.731172290053
## 18 00018.fits 187.2 137.311637403973 106.397121452758 115.595370868224
## 19 00019.fits  72.1 56.6672788103907 53.2359067557004 54.5816670396327
## 20 00020.fits 171.6 114.295874447645 102.871913131149  116.75194127855

and

psnr[1:20, c(1:2, 6:7)]
##        THEORY D.SNR          11 .SNR          12 .SNR
## 1  00001.fits 163.8 130.459662312782 121.410129390908
## 2  00002.fits 288.8 380.401105041159 364.395001835365
## 3  00003.fits 122.7 113.835403831215 109.056382075912
## 4  00004.fits 137.3 130.964080702413 121.056673510573
## 5  00005.fits 101.1 42.1264306140594  40.436507684288
## 6  00006.fits 144.9  86.503285724092 80.7471246809198
## 7  00007.fits 134.8 156.853727415829  153.20040374366
## 8  00008.fits 105.1 136.152210072654 128.463708588377
## 9  00009.fits  80.7 109.859060086462 100.049431730978
## 10 00010.fits 105.5  99.997897400918 94.1966128093806
## 11 00011.fits 120.9 77.4024562916032 75.0277282134922
## 12 00012.fits  73.6 94.2507827487855 88.7258992134475
## 13 00013.fits  74.8 67.5519116849584 64.8299125108343
## 14 00014.fits 376.0 36.0754361323104 36.6057213757243
## 15 00015.fits 224.6 35.7468925035846 36.1121758641171
## 16 00016.fits  89.2 131.116107674721 121.934857482697
## 17 00017.fits  89.2  131.23955951129 122.379451808434
## 18 00018.fits 187.2 121.164629652973 114.069774307889
## 19 00019.fits  72.1 56.6401551120061 52.9605617526288
## 20 00020.fits 171.6 127.847453299838 119.590226650698

Main conclusion here is that we are not able to predict the originally declared SNR So, let's work additionally with

Learning from how adding noise works

Let's start from one sampled spectrum like a blue one with index 1000. Its general picture looks like

plot(1:length(delo1[iddx, ]), delo1[iddx, ], type = "l", col = 3)

plot of chunk unnamed-chunk-11

with a spectral power graph like,

ta <- spectrum(data = as.numeric(delo1[iddx, ]))
## Error: argument "x" is missing, with no default
se <- spectrum(ta)
## Error: object 'ta' not found

if we have a look at the statistical parameters for this distribution we have 3.2938 × 10-4 as mean and 8.0694 × 10-5 as standard deviation.

Signal and Periodograms

Let us plot four plots per spectrum, which is its blue signal portion, its smoothed blue periodogram and then, periodograms for L and H resolutions.


for (i in 1:100) {
    linea <- sprintf("%12s %10s %10s %10s %10s", osnr[i, 1], osnr[i, 2], osnr[i, 
        3], osnr[i, 4], osnr[i, 5])

    par(mfrow = c(2, 2))
    tit <- paste(rownames(rd_B[i, ]), " B fraction")
    plot(1:length(rd_B[i, ]), rd_B[i, ], type = "l", main = tit, xlab = "Wavelength", 
        ylab = "Energy")
    plot(sp_B[[i]], main = tit)
    tit <- paste(rownames(rd_L[i, ]), " L fraction")
    plot(sp_L[[i]], main = tit)
    tit <- paste(rownames(rd_H[i, ]), " H fraction")
    plot(sp_H[[i]], main = tit)
    par(mfrow = c(1, 1))

    cat("\n --------------------------------------------------------\n")
    cat(paste("\n  NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR\n", 
        linea, "\n", sep = ""))

}

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00001.fits      163.8 26.2394481246712 26.2394481246712 67.5230554616693

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00002.fits      288.8 361.398612567866 361.398612567866 792.303514579114

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00003.fits      122.7 28.397618881473 28.397618881473 62.1796934990082

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00004.fits      137.3 30.4157467625289 30.4157467625289 71.2549576135147

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00005.fits      101.1 12.8878536655673 12.8878536655673 23.9785331052851

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00006.fits      144.9 15.4119255615594 15.4119255615594 33.3450468407331

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00007.fits      134.8 42.9762981206909 42.9762981206909 194.560573063463

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00008.fits      105.1 45.7922086863789 45.7922086863789 181.996115257925

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00009.fits       80.7 45.1509638488004 45.1509638488004 152.633122795621

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00010.fits      105.5 27.5296749602775 27.5296749602775 56.471982313251

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00011.fits      120.9 17.0562902075109 17.0562902075109 32.7831945448975

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00012.fits       73.6 56.7717060857951 56.7717060857951 126.725619462166

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00013.fits       74.8 21.8103401437975 21.8103401437975 41.5268746926864

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00014.fits        376 12.0862434983147 12.0862434983147 18.6512256856873

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00015.fits      224.6 12.0041337176951 12.0041337176951 18.7040553824664

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00016.fits       89.2 81.792193976718 81.792193976718 232.658226130451

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00017.fits       89.2 81.8429836737006 81.8429836737006 232.520209718436

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00018.fits      187.2 22.4364059641126 22.4364059641126 48.3407376451479

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00019.fits       72.1 17.8581165878733 17.8581165878733 36.554377031841

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00020.fits      171.6 25.6097392978677 25.6097392978677 54.4687664192282

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00021.fits      146.3 13.6659834115573 13.6659834115573 19.3851077905171

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00022.fits      122.3 13.6280067157854 13.6280067157854 25.9362051280911

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00023.fits      120.8 168.430358872827 168.430358872827 367.123008130785

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00024.fits         86 16.9139029912714 16.9139029912714 41.5892494523881

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00025.fits       80.9 31.1164492290605 31.1164492290605 67.0562049363269

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00026.fits        131 17.5482807742963 17.5482807742963 35.1735868775017

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00027.fits        131 17.891074353693 17.891074353693 35.1289819054464

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00028.fits      147.2 24.8024975046118 24.8024975046118 61.7336687413343

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00029.fits      365.5 23.2419251286493 23.2419251286493 63.3778038923205

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00030.fits         89 37.9320201273234 37.9320201273234 115.942673351236

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00031.fits      138.4 14.7536416750242 14.7536416750242 27.738118392416

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00032.fits      108.2 20.8386116138888 20.8386116138888 45.5338630992714

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00033.fits      102.2 26.2134574466049 26.2134574466049 77.8132416460607

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00034.fits      221.5 18.4110982521252 18.4110982521252 33.2968230728198

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00035.fits      155.2 17.970586152863 17.970586152863 33.5038013420126

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00036.fits      164.4 14.2634122885569 14.2634122885569 16.6243149293412

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00037.fits      164.4 14.3015879228428 14.3015879228428 16.5780937307735

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00038.fits      153.2 17.8534172846971 17.8534172846971 35.669232556902

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00039.fits      198.4 20.2250031962217 20.2250031962217 38.9653874009591

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00040.fits      306.8 16.2230524619354 16.2230524619354 17.9907016901975

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00041.fits      142.4 14.4359143501906 14.4359143501906 28.2151598425204

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00042.fits       76.6 22.2092651580072 22.2092651580072 44.0114482687244

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00043.fits        268 14.2244117527958 14.2244117527958 29.6962009877559

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00044.fits        180 18.6025039980799 18.6025039980799 33.2333523028401

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00045.fits      172.4 18.0815594965157 18.0815594965157 33.31581381656

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00046.fits        504 15.7040488750347 15.7040488750347 33.41382679937

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00047.fits      111.2 15.526850509764 15.526850509764 30.1026209225429

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00048.fits      179.9 23.3778784444102 23.3778784444102 46.9827321968472

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00049.fits      239.4 21.4075849409829 21.4075849409829 47.2939748308815

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00050.fits      163.4 20.644817613484 20.644817613484 51.1105750585448

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00051.fits      216.4 23.138678429253 23.138678429253 56.4103113668643

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00052.fits      138.9 24.9991887352417 24.9991887352417 67.5198024951028

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00053.fits      187.6 79.4345170931581 79.4345170931581 277.891367867185

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00054.fits      143.8 59.5583642373229 59.5583642373229 228.403482216778

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00055.fits      112.3 20.8965653827994 20.8965653827994 38.0657596875413

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00056.fits      107.3 21.7110632294124 21.7110632294124 37.7592029659422

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00057.fits        459 18.2157253500994 18.2157253500994 37.8501516908745

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00058.fits      337.7 20.9921175370521 20.9921175370521 38.1695839457817

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00059.fits        103 15.1321735502605 15.1321735502605 31.6768332429989

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00060.fits      107.9 11.8957670646922 11.8957670646922 19.4205258409883

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00061.fits      126.3 13.3645976145367 13.3645976145367 25.0988320602917

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00062.fits      135.4 400.495634937161 400.495634937161 595.085881946495

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00063.fits      133.9 431.007748990167 431.007748990167 616.408119109531

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00064.fits      285.4 520.434653991229 520.434653991229 796.248918480962

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00065.fits      171.4 350.741749117086 350.741749117086 546.200757646303

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00066.fits       67.9 18.4449172955085 18.4449172955085 31.3978054830834

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00067.fits         77 16.5858655348958 16.5858655348958 31.7321826825624

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00068.fits         77 16.6797910923074 16.6797910923074 31.7161674948167

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00069.fits      158.6 18.7001052322045 18.7001052322045 17.4735640149576

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00070.fits      137.8 31.7151944149854 31.7151944149854 108.711242418234

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00071.fits      165.8 30.5765692316526 30.5765692316526 106.882271665548

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00072.fits      396.9 27.5546339348418 27.5546339348418 103.077744270606

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00073.fits      106.1 13.3693984395335 13.3693984395335 28.6910113163917

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00074.fits      168.5 13.3157597396552 13.3157597396552 27.0320682160936

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00075.fits       94.1 29.0294117623298 29.0294117623298 62.5032425908364

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00076.fits      193.2 41.4873682618799 41.4873682618799 151.083020958742

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00077.fits      148.6 24.9541913700394 24.9541913700394 51.3140468285965

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00078.fits      111.8 54.735381216308 54.735381216308 138.276198806019

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00079.fits      115.5 18.365958938163 18.365958938163 33.669960867688

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00080.fits      184.7 20.8464093640226 20.8464093640226 38.2428331441551

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00081.fits      137.2 163.37822856365 163.37822856365 365.818861390912

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00082.fits      114.8 12.7769436598866 12.7769436598866 20.4778791545985

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00083.fits      161.4 65.4403797822887 65.4403797822887 213.686940216492

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00084.fits      119.1 20.9025125965146 20.9025125965146 40.38946131346

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00085.fits      109.2 20.9101234416311 20.9101234416311 39.7486068718192

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00086.fits       85.2 21.7317051471059 21.7317051471059 54.5259231373549

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00087.fits      134.4 12.9513347004504 12.9513347004504 15.2646411539621

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00088.fits       96.8 16.3990560218598 16.3990560218598 31.6297700881591

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00089.fits      133.5 15.6219026770862 15.6219026770862 31.70153736683

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00090.fits       91.9         NA         NA 29.1994858661367

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00091.fits      191.8 85.8662903555424 85.8662903555424 295.782575285642

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00092.fits      216.3 23.1761741786248 23.1761741786248 46.0476148494735

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00093.fits      203.2 22.9870205803555 22.9870205803555 46.1257255837394

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00095.fits      148.3 23.9686463508869 23.9686463508869 48.9050690068165

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00096.fits      155.5 39.0215480485962 39.0215480485962 102.328660679146

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00097.fits       75.5 13.323704964926 13.323704964926 23.6828370856625

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00098.fits       82.7 19.59268664785 19.59268664785 47.7201884790249

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00099.fits      274.4 628.725081168732 628.725081168732 1232.65303268264

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00100.fits      524.7 690.83104906538 690.83104906538 1469.72168213026

plot of chunk unnamed-chunk-13

## 
##  --------------------------------------------------------
## 
##   NAME      ORIG_SNR     BLUE_SNR            L_SNR            H_SNR
##   00101.fits      183.6 564.366111957771 564.366111957771 1003.94140709026