Main goal of this short branch is to discuss the concept for signal to noise ratio (SNR) measurement technique.
It is assumed that ELODIE includes 1959 spectra at three different resolutions:
| Resolution | Code |
|---|---|
| R=42000 | H |
| R=10000 | L |
| Blue fract. | Elo1 |
[Resolutions considered]
By using the R=10000 resolution two different energy ranges were provided
| Band | From (A) | To (A) | By (A) |
|---|---|---|---|
| Blue | 3960 | 4567 | 0.2 |
| Red | 6437 | 6800 | 0.2 |
[Energy Bands considered]
## Loading required package: magic
## Loading required package: abind
The previously stored data are now reloaded,
The real SNR values have been provided as estimated from the array of sensors device.
After loading the different families of spectra, we calculate their SNR values as per element basis. Then we merged all the SNR estimations with the original one.
Our first estimation for the SNR was based only into the wavelength expression for the spectra with out taking care of any sub-spectra region.
We can depict some relationships depending on each data-set studied
plot(osnr[, 2], osnr[, 3], xlab = "Original SNR", ylab = "Measured SNR", main = "Relationship in case of Elo1 dataset")
plot(osnr[, 2], osnr[, 5], xlab = "Original SNR", ylab = "Measured SNR", main = "Relationship in case of L dataset")
plot(osnr[, 2], osnr[, 6], xlab = "Original SNR", ylab = "Measured SNR", main = "Relationship in case of H dataset")
plot(osnr[, 2], osnr[, 7], xlab = "Original SNR", ylab = "Measured SNR", main = "Relationship in case of local H dataset")
The biggest conclusion is that it gets a wrong endpoint to associate a SNR value to a signal, to re-sample it and still considers this initial SNR as the good one.
In this way it is possible to realize how, for the biggest density (R=42000) there is a stronger relationship between some fraction of both spectra. Even when there is another set of spectra which are clearly uncorrelated.
osnr[1:20, 1:5]
## THEORY D.SNR B.SNR R.SNR L.SNR
## 1 00001.fits 163.8 26.2394481246712 26.2394481246712 67.5230554616693
## 2 00002.fits 288.8 361.398612567866 361.398612567866 792.303514579114
## 3 00003.fits 122.7 28.397618881473 28.397618881473 62.1796934990082
## 4 00004.fits 137.3 30.4157467625289 30.4157467625289 71.2549576135147
## 5 00005.fits 101.1 12.8878536655673 12.8878536655673 23.9785331052851
## 6 00006.fits 144.9 15.4119255615594 15.4119255615594 33.3450468407331
## 7 00007.fits 134.8 42.9762981206909 42.9762981206909 194.560573063463
## 8 00008.fits 105.1 45.7922086863789 45.7922086863789 181.996115257925
## 9 00009.fits 80.7 45.1509638488004 45.1509638488004 152.633122795621
## 10 00010.fits 105.5 27.5296749602775 27.5296749602775 56.471982313251
## 11 00011.fits 120.9 17.0562902075109 17.0562902075109 32.7831945448975
## 12 00012.fits 73.6 56.7717060857951 56.7717060857951 126.725619462166
## 13 00013.fits 74.8 21.8103401437975 21.8103401437975 41.5268746926864
## 14 00014.fits 376.0 12.0862434983147 12.0862434983147 18.6512256856873
## 15 00015.fits 224.6 12.0041337176951 12.0041337176951 18.7040553824664
## 16 00016.fits 89.2 81.792193976718 81.792193976718 232.658226130451
## 17 00017.fits 89.2 81.8429836737006 81.8429836737006 232.520209718436
## 18 00018.fits 187.2 22.4364059641126 22.4364059641126 48.3407376451479
## 19 00019.fits 72.1 17.8581165878733 17.8581165878733 36.554377031841
## 20 00020.fits 171.6 25.6097392978677 25.6097392978677 54.4687664192282
Error measurement by band around 5500A, by local FFT around that wavelehgth. Considered windows will be 256, 512, 1024, 2048, 4096
rslH <- 0.05
orgH <- 3900
psnr <- dsnr
for (dlt in seq(8, 12)) {
cpos <- (5500 - orgH)/rslH
pas <- 2^(dlt)
hcsnr <- apply(rd_H[, floor(cpos - pas/2):floor(cpos + pas/2)], 1, fsnr)
#
hcsnrd <- as.data.frame(cbind(names(hcsnr), as.numeric(hcsnr)))
text <- paste(dlt, ".HBND")
tex2 <- paste(dlt, ".SNR")
colnames(hcsnrd) <- c(text, tex2)
psnr <- merge(psnr, hcsnrd, by.x = "THEORY", by.y = text, sort = TRUE, all = TRUE)
}
osnr[1:20, c(1:2, 6:7)]
## THEORY D.SNR H.SNR HBND.SNR
## 1 00001.fits 163.8 80.387641787958 146.180826265927
## 2 00002.fits 288.8 269.266968402058 433.563487691221
## 3 00003.fits 122.7 74.5942053808666 107.186068345025
## 4 00004.fits 137.3 80.8961004913999 160.33534450115
## 5 00005.fits 101.1 27.052446993182 56.0259421167451
## 6 00006.fits 144.9 53.8588479708267 113.892388132789
## 7 00007.fits 134.8 109.360429963834 145.568290600405
## 8 00008.fits 105.1 89.2406366300405 133.000083401165
## 9 00009.fits 80.7 66.0652374631983 107.637620747169
## 10 00010.fits 105.5 63.8270265818283 120.021647122842
## 11 00011.fits 120.9 47.0704185352661 111.200855610754
## 12 00012.fits 73.6 59.7811856481925 99.9694170129399
## 13 00013.fits 74.8 42.4882034728498 74.4647799699079
## 14 00014.fits 376.0 25.1858452094172 61.5033164587391
## 15 00015.fits 224.6 24.9494558706771 59.322966977515
## 16 00016.fits 89.2 82.2784887816092 126.177342416592
## 17 00017.fits 89.2 82.2955728234692 126.147704066393
## 18 00018.fits 187.2 70.6073725324837 147.992434642949
## 19 00019.fits 72.1 36.5030519194865 66.0549595555163
## 20 00020.fits 171.6 76.5534664675584 141.344661262157
Now, it is time to have a look to the different periodograms at different sampling resolutions
psnr[1:20, 1:5]
## THEORY D.SNR 8 .SNR 9 .SNR 10 .SNR
## 1 00001.fits 163.8 140.038319449606 121.369812987247 125.140809473659
## 2 00002.fits 288.8 418.273353293255 433.502502770795 400.223296517381
## 3 00003.fits 122.7 108.89236030774 108.70521349289 107.360640193766
## 4 00004.fits 137.3 140.517642808016 128.363945564501 133.133057536069
## 5 00005.fits 101.1 46.6842498069175 36.451119878017 40.7973343343739
## 6 00006.fits 144.9 96.5301855458177 85.4436498986788 85.2192022599505
## 7 00007.fits 134.8 144.635136323297 151.12315278166 151.464514561051
## 8 00008.fits 105.1 140.648906158605 141.635116376949 139.768910460531
## 9 00009.fits 80.7 115.220012244607 120.734860286675 115.539911041657
## 10 00010.fits 105.5 105.207116578212 96.7242177854302 97.2370793564668
## 11 00011.fits 120.9 93.3261196335231 66.5550071436699 72.4445408371857
## 12 00012.fits 73.6 102.764083730727 104.716935798403 100.307901539783
## 13 00013.fits 74.8 70.4828155583254 65.7714059377006 65.273153806047
## 14 00014.fits 376.0 52.3766366461237 36.3619128666981 36.5105702237634
## 15 00015.fits 224.6 49.6456688450098 36.0562418031433 35.4126156206947
## 16 00016.fits 89.2 133.14393160961 131.010693741214 128.685865623536
## 17 00017.fits 89.2 133.174868218658 131.019132336857 128.731172290053
## 18 00018.fits 187.2 137.311637403973 106.397121452758 115.595370868224
## 19 00019.fits 72.1 56.6672788103907 53.2359067557004 54.5816670396327
## 20 00020.fits 171.6 114.295874447645 102.871913131149 116.75194127855
and
psnr[1:20, c(1:2, 6:7)]
## THEORY D.SNR 11 .SNR 12 .SNR
## 1 00001.fits 163.8 130.459662312782 121.410129390908
## 2 00002.fits 288.8 380.401105041159 364.395001835365
## 3 00003.fits 122.7 113.835403831215 109.056382075912
## 4 00004.fits 137.3 130.964080702413 121.056673510573
## 5 00005.fits 101.1 42.1264306140594 40.436507684288
## 6 00006.fits 144.9 86.503285724092 80.7471246809198
## 7 00007.fits 134.8 156.853727415829 153.20040374366
## 8 00008.fits 105.1 136.152210072654 128.463708588377
## 9 00009.fits 80.7 109.859060086462 100.049431730978
## 10 00010.fits 105.5 99.997897400918 94.1966128093806
## 11 00011.fits 120.9 77.4024562916032 75.0277282134922
## 12 00012.fits 73.6 94.2507827487855 88.7258992134475
## 13 00013.fits 74.8 67.5519116849584 64.8299125108343
## 14 00014.fits 376.0 36.0754361323104 36.6057213757243
## 15 00015.fits 224.6 35.7468925035846 36.1121758641171
## 16 00016.fits 89.2 131.116107674721 121.934857482697
## 17 00017.fits 89.2 131.23955951129 122.379451808434
## 18 00018.fits 187.2 121.164629652973 114.069774307889
## 19 00019.fits 72.1 56.6401551120061 52.9605617526288
## 20 00020.fits 171.6 127.847453299838 119.590226650698
Main conclusion here is that we are not able to predict the originally declared SNR So, let's work additionally with
Let's start from one sampled spectrum like a blue one with index 1000. Its general picture looks like
plot(1:length(delo1[iddx, ]), delo1[iddx, ], type = "l", col = 3)
with a spectral power graph like,
ta <- spectrum(data = as.numeric(delo1[iddx, ]))
## Error: argument "x" is missing, with no default
se <- spectrum(ta)
## Error: object 'ta' not found
if we have a look at the statistical parameters for this distribution we have 3.2938 × 10-4 as mean and 8.0694 × 10-5 as standard deviation.
Let us plot four plots per spectrum, which is its blue signal portion, its smoothed blue periodogram and then, periodograms for L and H resolutions.
for (i in 1:100) {
linea <- sprintf("%12s %10s %10s %10s %10s", osnr[i, 1], osnr[i, 2], osnr[i,
3], osnr[i, 4], osnr[i, 5])
par(mfrow = c(2, 2))
tit <- paste(rownames(rd_B[i, ]), " B fraction")
plot(1:length(rd_B[i, ]), rd_B[i, ], type = "l", main = tit, xlab = "Wavelength",
ylab = "Energy")
plot(sp_B[[i]], main = tit)
tit <- paste(rownames(rd_L[i, ]), " L fraction")
plot(sp_L[[i]], main = tit)
tit <- paste(rownames(rd_H[i, ]), " H fraction")
plot(sp_H[[i]], main = tit)
par(mfrow = c(1, 1))
cat("\n --------------------------------------------------------\n")
cat(paste("\n NAME ORIG_SNR BLUE_SNR L_SNR H_SNR\n",
linea, "\n", sep = ""))
}
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00001.fits 163.8 26.2394481246712 26.2394481246712 67.5230554616693
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00002.fits 288.8 361.398612567866 361.398612567866 792.303514579114
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00003.fits 122.7 28.397618881473 28.397618881473 62.1796934990082
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00004.fits 137.3 30.4157467625289 30.4157467625289 71.2549576135147
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00005.fits 101.1 12.8878536655673 12.8878536655673 23.9785331052851
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00006.fits 144.9 15.4119255615594 15.4119255615594 33.3450468407331
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00007.fits 134.8 42.9762981206909 42.9762981206909 194.560573063463
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00008.fits 105.1 45.7922086863789 45.7922086863789 181.996115257925
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00009.fits 80.7 45.1509638488004 45.1509638488004 152.633122795621
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00010.fits 105.5 27.5296749602775 27.5296749602775 56.471982313251
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00011.fits 120.9 17.0562902075109 17.0562902075109 32.7831945448975
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00012.fits 73.6 56.7717060857951 56.7717060857951 126.725619462166
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00013.fits 74.8 21.8103401437975 21.8103401437975 41.5268746926864
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00014.fits 376 12.0862434983147 12.0862434983147 18.6512256856873
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00015.fits 224.6 12.0041337176951 12.0041337176951 18.7040553824664
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00016.fits 89.2 81.792193976718 81.792193976718 232.658226130451
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00017.fits 89.2 81.8429836737006 81.8429836737006 232.520209718436
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00018.fits 187.2 22.4364059641126 22.4364059641126 48.3407376451479
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00019.fits 72.1 17.8581165878733 17.8581165878733 36.554377031841
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00020.fits 171.6 25.6097392978677 25.6097392978677 54.4687664192282
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00021.fits 146.3 13.6659834115573 13.6659834115573 19.3851077905171
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00022.fits 122.3 13.6280067157854 13.6280067157854 25.9362051280911
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00023.fits 120.8 168.430358872827 168.430358872827 367.123008130785
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00024.fits 86 16.9139029912714 16.9139029912714 41.5892494523881
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00025.fits 80.9 31.1164492290605 31.1164492290605 67.0562049363269
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00026.fits 131 17.5482807742963 17.5482807742963 35.1735868775017
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00027.fits 131 17.891074353693 17.891074353693 35.1289819054464
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00028.fits 147.2 24.8024975046118 24.8024975046118 61.7336687413343
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00029.fits 365.5 23.2419251286493 23.2419251286493 63.3778038923205
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00030.fits 89 37.9320201273234 37.9320201273234 115.942673351236
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00031.fits 138.4 14.7536416750242 14.7536416750242 27.738118392416
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00032.fits 108.2 20.8386116138888 20.8386116138888 45.5338630992714
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00033.fits 102.2 26.2134574466049 26.2134574466049 77.8132416460607
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00034.fits 221.5 18.4110982521252 18.4110982521252 33.2968230728198
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00035.fits 155.2 17.970586152863 17.970586152863 33.5038013420126
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00036.fits 164.4 14.2634122885569 14.2634122885569 16.6243149293412
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00037.fits 164.4 14.3015879228428 14.3015879228428 16.5780937307735
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00038.fits 153.2 17.8534172846971 17.8534172846971 35.669232556902
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00039.fits 198.4 20.2250031962217 20.2250031962217 38.9653874009591
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00040.fits 306.8 16.2230524619354 16.2230524619354 17.9907016901975
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00041.fits 142.4 14.4359143501906 14.4359143501906 28.2151598425204
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00042.fits 76.6 22.2092651580072 22.2092651580072 44.0114482687244
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00043.fits 268 14.2244117527958 14.2244117527958 29.6962009877559
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00044.fits 180 18.6025039980799 18.6025039980799 33.2333523028401
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00045.fits 172.4 18.0815594965157 18.0815594965157 33.31581381656
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00046.fits 504 15.7040488750347 15.7040488750347 33.41382679937
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00047.fits 111.2 15.526850509764 15.526850509764 30.1026209225429
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00048.fits 179.9 23.3778784444102 23.3778784444102 46.9827321968472
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00049.fits 239.4 21.4075849409829 21.4075849409829 47.2939748308815
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00050.fits 163.4 20.644817613484 20.644817613484 51.1105750585448
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00051.fits 216.4 23.138678429253 23.138678429253 56.4103113668643
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00052.fits 138.9 24.9991887352417 24.9991887352417 67.5198024951028
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00053.fits 187.6 79.4345170931581 79.4345170931581 277.891367867185
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00054.fits 143.8 59.5583642373229 59.5583642373229 228.403482216778
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00055.fits 112.3 20.8965653827994 20.8965653827994 38.0657596875413
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00056.fits 107.3 21.7110632294124 21.7110632294124 37.7592029659422
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00057.fits 459 18.2157253500994 18.2157253500994 37.8501516908745
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00058.fits 337.7 20.9921175370521 20.9921175370521 38.1695839457817
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00059.fits 103 15.1321735502605 15.1321735502605 31.6768332429989
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00060.fits 107.9 11.8957670646922 11.8957670646922 19.4205258409883
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00061.fits 126.3 13.3645976145367 13.3645976145367 25.0988320602917
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00062.fits 135.4 400.495634937161 400.495634937161 595.085881946495
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00063.fits 133.9 431.007748990167 431.007748990167 616.408119109531
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00064.fits 285.4 520.434653991229 520.434653991229 796.248918480962
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00065.fits 171.4 350.741749117086 350.741749117086 546.200757646303
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00066.fits 67.9 18.4449172955085 18.4449172955085 31.3978054830834
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00067.fits 77 16.5858655348958 16.5858655348958 31.7321826825624
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00068.fits 77 16.6797910923074 16.6797910923074 31.7161674948167
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00069.fits 158.6 18.7001052322045 18.7001052322045 17.4735640149576
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00070.fits 137.8 31.7151944149854 31.7151944149854 108.711242418234
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00071.fits 165.8 30.5765692316526 30.5765692316526 106.882271665548
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00072.fits 396.9 27.5546339348418 27.5546339348418 103.077744270606
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00073.fits 106.1 13.3693984395335 13.3693984395335 28.6910113163917
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00074.fits 168.5 13.3157597396552 13.3157597396552 27.0320682160936
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00075.fits 94.1 29.0294117623298 29.0294117623298 62.5032425908364
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00076.fits 193.2 41.4873682618799 41.4873682618799 151.083020958742
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00077.fits 148.6 24.9541913700394 24.9541913700394 51.3140468285965
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00078.fits 111.8 54.735381216308 54.735381216308 138.276198806019
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00079.fits 115.5 18.365958938163 18.365958938163 33.669960867688
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00080.fits 184.7 20.8464093640226 20.8464093640226 38.2428331441551
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00081.fits 137.2 163.37822856365 163.37822856365 365.818861390912
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00082.fits 114.8 12.7769436598866 12.7769436598866 20.4778791545985
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00083.fits 161.4 65.4403797822887 65.4403797822887 213.686940216492
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00084.fits 119.1 20.9025125965146 20.9025125965146 40.38946131346
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00085.fits 109.2 20.9101234416311 20.9101234416311 39.7486068718192
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00086.fits 85.2 21.7317051471059 21.7317051471059 54.5259231373549
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00087.fits 134.4 12.9513347004504 12.9513347004504 15.2646411539621
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00088.fits 96.8 16.3990560218598 16.3990560218598 31.6297700881591
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00089.fits 133.5 15.6219026770862 15.6219026770862 31.70153736683
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00090.fits 91.9 NA NA 29.1994858661367
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00091.fits 191.8 85.8662903555424 85.8662903555424 295.782575285642
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00092.fits 216.3 23.1761741786248 23.1761741786248 46.0476148494735
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00093.fits 203.2 22.9870205803555 22.9870205803555 46.1257255837394
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00095.fits 148.3 23.9686463508869 23.9686463508869 48.9050690068165
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00096.fits 155.5 39.0215480485962 39.0215480485962 102.328660679146
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00097.fits 75.5 13.323704964926 13.323704964926 23.6828370856625
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00098.fits 82.7 19.59268664785 19.59268664785 47.7201884790249
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00099.fits 274.4 628.725081168732 628.725081168732 1232.65303268264
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00100.fits 524.7 690.83104906538 690.83104906538 1469.72168213026
##
## --------------------------------------------------------
##
## NAME ORIG_SNR BLUE_SNR L_SNR H_SNR
## 00101.fits 183.6 564.366111957771 564.366111957771 1003.94140709026