R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

INTRODUCTION

Fast Moving Consumer Goods (FMCG) Industry in India is one of the fastest developing sectors in the Indian economy. At present the FMCG Industry is worth USD 49 billion(2016-17) and it is the 4th largest in the Indian Economy. These products have very fast turnaround rate, i.e. the time from production to the revenue from the sale of the product is very less. It is estimated to grow at 20-25% per annum, Retail market to reach US$ 1.1 trillion in 2020.

It include segments like cosmetics, toiletries, glassware, batteries, bulbs, pharmaceuticals, packaged food products, white goods, house care products, plastic goods, consumer non-durables, etc. The FMCG market is highly concentrated in the urban areas as the rise in the income of the middle-income group is one of the major factors for the growth of the Indian FMCG market.

OVERVIEW OF STUDY

The FMCG sector mainly focus on high volume and low margin so the amount of liquidity of cash is very important factor while assesing the Market Capitalization of a FMCG company. Further the time in which a company can convert their inventory into cash is also important. So I will mainly focus on how different ratio help in drivation of market capitalization of FMCG company. I have used the past 15 years data of different FMCG company to see the trend how the Market Capitalization of differnt companies is changing with different liquidity and turnover ratios. The Market CAP is direcly effected by the change in Current Market Price(CMP) of a stock and stock are effected by different financial reports and Ratios.

Research Objective

Liquidity and Turnover Ratios: How they affect the market capitalization?

Research Hypothesis

H0 : There is no impact of Liquidity or Turnover Ratios on Market Capitalization

H1 : Liquidity and Profitability Ratios affect Market Capitalization

DATA

The data collected for the research is from the bloomberg terminal for 34 listed companies of last 15 years. Some companies have become debt free over the period of time so their Debt/Equity Ratio and Debt/Capital Ratio is zero whereas some companies maintain zero inventory due to adpotion of Just-in-Time strategy so for few years has zero inventory turnover ratio.

Liquidity Ratios

Liquidity ratios measure a company’s ability to pay debt obligations and its margin of safety through the calculation of metrics including the current ratio, quick ratio and operating cash flow ratio.

Type of Liquidity Ratios:

1.Current Ratio

2.Cash Ratio

3.Quick Ratio

4.Total Debt to Equity

5.Total Debt to Capital

Turnover Ratios

A turnover ratio represents the amount of assets or liabilities that a company replaces in relation to its sales. The concept is useful for determining the efficiency with which a business utilizes its assets. In most cases, a high asset turnover ratio is considered good, since it implies that receivables are collected quickly, fixed assets are heavily utilized, and little excess inventory is kept on hand. This implies a minimal need for invested funds, and therefore a high return on investment.

Type of Turnover Ratios:

1.Accounts Recivable Turnover

2.Inventory Turnover

MODEL

In order to test Hypothesis, we proposed the following model:

\[ MCAP.Million.INR. = Revenue.Million.INR. + Capital.Million.INR.+ Total.Debt.Million.INR. +\] \[Total.Inventory.Million. + Cash.Ratio + Quick.Ratio + Current.Ratio + Total.Debt.Equity + Total.Debt.Capital +\] \[Accounts.Receivable.Turnover + Inventory.Turnover\]

fmcg.cf <- read.csv(paste("fmcg.csv", sep = ""))
View(fmcg.cf)
M1 <- lm(MCAP.Million.INR. ~ Revenue.Million.INR. + Capital.Million.INR.+ Total.Debt.Million.INR. + Total.Inventory.Million. + Cash.Ratio + Quick.Ratio + Current.Ratio + Total.Debt.Equity + Total.Debt.Capital + Accounts.Receivable.Turnover + Inventory.Turnover, data=fmcg.cf)
summary(M1)
## 
## Call:
## lm(formula = MCAP.Million.INR. ~ Revenue.Million.INR. + Capital.Million.INR. + 
##     Total.Debt.Million.INR. + Total.Inventory.Million. + Cash.Ratio + 
##     Quick.Ratio + Current.Ratio + Total.Debt.Equity + Total.Debt.Capital + 
##     Accounts.Receivable.Turnover + Inventory.Turnover, data = fmcg.cf)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -675596  -52787   -1488   40646 1437914 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   87676.927  15008.650   5.842 9.40e-09 ***
## Revenue.Million.INR.              9.458     53.915   0.175   0.8608    
## Capital.Million.INR.            276.398    229.001   1.207   0.2280    
## Total.Debt.Million.INR.          31.444     17.723   1.774   0.0766 .  
## Total.Inventory.Million.         18.939      1.196  15.837  < 2e-16 ***
## Cash.Ratio                   -38935.077  25560.188  -1.523   0.1283    
## Quick.Ratio                   48029.088  30312.422   1.584   0.1137    
## Current.Ratio                -11263.368   7325.032  -1.538   0.1248    
## Total.Debt.Equity               145.915    111.410   1.310   0.1909    
## Total.Debt.Capital            -3107.415    514.076  -6.045 2.96e-09 ***
## Accounts.Receivable.Turnover    -13.968     17.290  -0.808   0.4196    
## Inventory.Turnover              354.526    691.904   0.512   0.6086    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 149400 on 492 degrees of freedom
## Multiple R-squared:  0.4039, Adjusted R-squared:  0.3905 
## F-statistic:  30.3 on 11 and 492 DF,  p-value: < 2.2e-16

RESULTS

I found that the Inventory and Debt/Capital have a huge signifucance as the FMCG is driven hugely by high volumes and low margins. So, the amount of inventory a company keep and the level of debt and capital company has plays a huge role in Market CAP of a company.

CONCLUSION

This paper was motivated by the need for research that could improve our understanding of how the Market Cap of an FMCG stock is effected by different tupe of financial results and ratios. The unique contribution of this paper is that I investigated the differnt liquidity and turn over ratios impact the valuation of a comapny in FMCG sector. I found that Inventory and Capital play a huge role for a company in FMCG sector due to its low margins and high volumes.

APPENDIX

summary(fmcg.cf)
##       year                 Company    Revenue.Million.INR.
##  FY 2003: 34   Avanti feeds    : 15   Min.   : -94.00     
##  FY 2004: 34   Bombay Burmah   : 15   1st Qu.:   4.00     
##  FY 2005: 34   CCL Products    : 15   Median :  12.00     
##  FY 2006: 34   Chaman Lal Setia: 15   Mean   :  19.83     
##  FY 2010: 34   Colgate         : 15   3rd Qu.:  20.00     
##  FY 2011: 34   Dabur           : 15   Max.   :2767.00     
##  (Other):300   (Other)         :414                       
##  Total.Debt.Million.INR. Capital.Million.INR. Total.Inventory.Million.
##  Min.   : -99.00         Min.   :-68.00       Min.   :    0           
##  1st Qu.: -11.00         1st Qu.:  2.00       1st Qu.:  484           
##  Median :   0.00         Median : 10.00       Median : 1236           
##  Mean   :  55.88         Mean   : 16.56       Mean   : 3285           
##  3rd Qu.:  26.00         3rd Qu.: 24.00       3rd Qu.: 3004           
##  Max.   :5317.00         Max.   :262.00       Max.   :41614           
##                                                                       
##    Cash.Ratio      Current.Ratio     Quick.Ratio      Total.Debt.Equity
##  Min.   : 0.0000   Min.   : 0.000   Min.   : 0.0000   Min.   :   0.00  
##  1st Qu.: 0.0600   1st Qu.: 1.040   1st Qu.: 0.3200   1st Qu.:  12.75  
##  Median : 0.1900   Median : 1.380   Median : 0.5600   Median :  50.00  
##  Mean   : 0.4318   Mean   : 1.861   Mean   : 0.7812   Mean   :  82.97  
##  3rd Qu.: 0.4800   3rd Qu.: 1.950   3rd Qu.: 0.9000   3rd Qu.: 114.00  
##  Max.   :15.2100   Max.   :20.130   Max.   :15.2100   Max.   :1104.00  
##                                                                        
##  Total.Debt.Capital Accounts.Receivable.Turnover Inventory.Turnover
##  Min.   : 0.00      Min.   :   0.00              Min.   :  0.000   
##  1st Qu.:11.00      1st Qu.:   7.00              1st Qu.:  0.000   
##  Median :33.00      Median :  13.00              Median :  1.000   
##  Mean   :33.21      Mean   :  69.38              Mean   :  4.032   
##  3rd Qu.:53.00      3rd Qu.:  27.25              3rd Qu.:  4.250   
##  Max.   :92.00      Max.   :8060.00              Max.   :107.000   
##                                                                    
##  MCAP.Million.INR.
##  Min.   :      0  
##  1st Qu.:   1523  
##  Median :   6806  
##  Mean   :  65532  
##  3rd Qu.:  37164  
##  Max.   :1973346  
## 
library(psych)
describe(fmcg.cf)
##                              vars   n     mean        sd  median  trimmed
## year*                           1 504     7.99      4.33    8.00     7.99
## Company*                        2 504    17.55      9.86   18.00    17.57
## Revenue.Million.INR.            3 504    19.83    124.96   12.00    12.40
## Total.Debt.Million.INR.         4 504    55.88    387.77    0.00     7.61
## Capital.Million.INR.            5 504    16.56     30.91   10.00    12.74
## Total.Inventory.Million.        6 504  3285.28   5688.09 1235.50  1889.67
## Cash.Ratio                      7 504     0.43      1.19    0.19     0.27
## Current.Ratio                   8 504     1.86      1.95    1.38     1.49
## Quick.Ratio                     9 504     0.78      1.22    0.56     0.62
## Total.Debt.Equity              10 504    82.97    109.29   50.00    61.94
## Total.Debt.Capital             11 504    33.21     24.56   33.00    32.11
## Accounts.Receivable.Turnover   12 504    69.38    414.39   13.00    18.13
## Inventory.Turnover             13 504     4.03     10.38    1.00     2.01
## MCAP.Million.INR.              14 504 65532.10 191396.38 6806.50 24156.94
##                                  mad min        max      range  skew
## year*                           5.93   1      15.00      14.00 -0.01
## Company*                       13.34   1      34.00      33.00 -0.01
## Revenue.Million.INR.           11.86 -94    2767.00    2861.00 21.09
## Total.Debt.Million.INR.        26.69 -99    5317.00    5416.00 10.73
## Capital.Million.INR.           16.31 -68     262.00     330.00  2.56
## Total.Inventory.Million.     1365.47   0   41614.00   41614.00  3.44
## Cash.Ratio                      0.24   0      15.21      15.21 10.62
## Current.Ratio                   0.59   0      20.13      20.13  5.13
## Quick.Ratio                     0.40   0      15.21      15.21  9.22
## Total.Debt.Equity              65.23   0    1104.00    1104.00  3.30
## Total.Debt.Capital             30.39   0      92.00      92.00  0.19
## Accounts.Receivable.Turnover   11.86   0    8060.00    8060.00 15.25
## Inventory.Turnover              1.48   0     107.00     107.00  5.99
## MCAP.Million.INR.            9626.52   0 1973346.00 1973346.00  6.67
##                              kurtosis      se
## year*                           -1.22    0.19
## Company*                        -1.22    0.44
## Revenue.Million.INR.           460.45    5.57
## Total.Debt.Million.INR.        128.36   17.27
## Capital.Million.INR.            13.02    1.38
## Total.Inventory.Million.        13.68  253.37
## Cash.Ratio                     125.19    0.05
## Current.Ratio                   33.34    0.09
## Quick.Ratio                    102.39    0.05
## Total.Debt.Equity               19.01    4.87
## Total.Debt.Capital              -1.09    1.09
## Accounts.Receivable.Turnover   276.02   18.46
## Inventory.Turnover              42.89    0.46
## MCAP.Million.INR.               55.22 8525.47
attach(fmcg.cf)
aggregate(cbind(Quick.Ratio, Total.Debt.Equity, Accounts.Receivable.Turnover,MCAP.Million.INR.) ~ Company, 
                   data = fmcg.cf, mean)
##                       Company Quick.Ratio Total.Debt.Equity
## 1                Avanti feeds   0.7280000        43.4666667
## 2               Bombay Burmah   0.8233333       210.2000000
## 3                CCL Products   0.6700000        61.3333333
## 4            Chaman Lal Setia   1.2493333       100.4666667
## 5                     Colgate   0.4126667         3.5333333
## 6                       Dabur   0.6386667        18.0000000
## 7                       Emami   1.6353333        27.0666667
## 8                    Eveready   0.1506667        66.4000000
## 9                    Gillette   1.0053846         0.0000000
## 10               GM Breweries   0.2240000        56.8666667
## 11                    Godfrey   0.2720000        18.0000000
## 12                     Godrej   0.4193333        25.1333333
## 13            Goodricke Group   0.4953846        24.4615385
## 14                        GSK   1.4380000         0.0000000
## 15 Gujarat Ambuja Exports Ltd   0.3706667        58.6000000
## 16              Heritage food   0.3493333        99.1333333
## 17                        HUL   0.6461538        20.0769231
## 18               Jayshree Tea   0.3166667        99.8000000
## 19             Kohinoor Foods   0.9566667       343.1333333
## 20                Kwality Ltd   0.8626667       224.3333333
## 21                     Marico   0.5240000        58.4000000
## 22                        P&G   0.8913333         0.0000000
## 23             Radico Khaitan   1.0486667       146.8666667
## 24                      Rasoi   3.5260000        38.6666667
## 25                 Ruchi Soya   0.6513333       224.9333333
## 26      Sanwari Consumers Ltd   1.0680000       158.2666667
## 27           Tata Coffee Ltd.   0.4426667        34.6666667
## 28      Tata Global Beverages   0.7320000        61.1333333
## 29             TTK Healthcare   0.9726667        33.0000000
## 30       United Breweries Ltd   0.8313333       162.8666667
## 31         United Spirits Ltd   0.4433333       132.6666667
## 32                Vadilal Ltd   0.3740000       151.0000000
## 33                    Venky's   0.9680000        90.3333333
## 34                   VST INDS   0.3973333         0.9333333
##    Accounts.Receivable.Turnover MCAP.Million.INR.
## 1                     32.733333         4948.6667
## 2                      5.866667        11166.6000
## 3                      7.400000         8640.0000
## 4                      9.733333          787.4000
## 5                     77.666667       117327.4000
## 6                     21.200000       189102.3333
## 7                     18.333333        73445.7333
## 8                     22.266667         6266.6667
## 9                      9.692308        65434.1538
## 10                  1343.066667         1797.4000
## 11                    50.333333        22749.8000
## 12                    50.400000       165520.6667
## 13                     8.846154         2519.5385
## 14                    31.200000       110335.4000
## 15                    19.666667         3827.3333
## 16                   124.333333         4616.1333
## 17                    28.538462       941271.9231
## 18                     9.533333         1931.1333
## 19                     8.133333         1530.8667
## 20                     3.666667         9745.0667
## 21                    24.800000       109963.3333
## 22                    27.133333        84190.2000
## 23                     4.866667        12418.2000
## 24                   133.600000          817.1333
## 25                     8.400000        13791.6000
## 26                    16.666667         6511.5333
## 27                     9.466667        10975.4667
## 28                   128.066667        57093.0000
## 29                     9.733333         2573.6667
## 30                     5.133333       104063.1333
## 31                     6.133333       172247.4000
## 32                    12.133333         1317.7333
## 33                    11.600000         3359.6667
## 34                    57.200000        14155.8000
Var1 <- aggregate(Capital.Million.INR., by=list(View=Company), mean)
colnames(Var1) <- c("Company", "Average Capital")
Var1
##                       Company Average Capital
## 1                Avanti feeds       17.133333
## 2               Bombay Burmah        7.600000
## 3                CCL Products       22.400000
## 4            Chaman Lal Setia       13.200000
## 5                     Colgate       13.933333
## 6                       Dabur       15.933333
## 7                       Emami       17.666667
## 8                    Eveready       -4.800000
## 9                    Gillette        4.692308
## 10               GM Breweries       12.533333
## 11                    Godfrey       12.933333
## 12                     Godrej       39.466667
## 13            Goodricke Group        7.076923
## 14                        GSK       11.666667
## 15 Gujarat Ambuja Exports Ltd       18.000000
## 16              Heritage food       20.933333
## 17                        HUL        4.615385
## 18               Jayshree Tea       10.400000
## 19             Kohinoor Foods       11.000000
## 20                Kwality Ltd       57.466667
## 21                     Marico       22.133333
## 22                        P&G       10.600000
## 23             Radico Khaitan       18.866667
## 24                      Rasoi       22.466667
## 25                 Ruchi Soya       24.800000
## 26      Sanwari Consumers Ltd       35.266667
## 27           Tata Coffee Ltd.       12.400000
## 28      Tata Global Beverages        9.733333
## 29             TTK Healthcare        6.066667
## 30       United Breweries Ltd       21.200000
## 31         United Spirits Ltd       23.866667
## 32                Vadilal Ltd        9.800000
## 33                    Venky's       16.133333
## 34                   VST INDS       11.533333
Var2 <- aggregate(Total.Debt.Capital, by=list(View=Company), mean)
colnames(Var2) <- c("Company", "Average Debt/Capital")
Var2
##                       Company Average Debt/Capital
## 1                Avanti feeds           28.4666667
## 2               Bombay Burmah           62.5333333
## 3                CCL Products           34.9333333
## 4            Chaman Lal Setia           47.0000000
## 5                     Colgate            3.2000000
## 6                       Dabur           14.5333333
## 7                       Emami           17.6000000
## 8                    Eveready           38.3333333
## 9                    Gillette            0.0000000
## 10               GM Breweries           29.4000000
## 11                    Godfrey           14.8000000
## 12                     Godrej           16.1333333
## 13            Goodricke Group           17.5384615
## 14                        GSK            0.0000000
## 15 Gujarat Ambuja Exports Ltd           35.1333333
## 16              Heritage food           43.7333333
## 17                        HUL           11.4615385
## 18               Jayshree Tea           49.4666667
## 19             Kohinoor Foods           76.5333333
## 20                Kwality Ltd           62.8666667
## 21                     Marico           31.4000000
## 22                        P&G            0.0000000
## 23             Radico Khaitan           56.2000000
## 24                      Rasoi           23.0000000
## 25                 Ruchi Soya           65.6666667
## 26      Sanwari Consumers Ltd           58.0666667
## 27           Tata Coffee Ltd.           24.1333333
## 28      Tata Global Beverages           32.4000000
## 29             TTK Healthcare           23.8000000
## 30       United Breweries Ltd           43.6666667
## 31         United Spirits Ltd           53.7333333
## 32                Vadilal Ltd           58.4666667
## 33                    Venky's           44.7333333
## 34                   VST INDS            0.8666667
Var3 <- aggregate(Capital.Million.INR., by=list(View=year), mean)
colnames(Var3) <- c("Year", "Average Capital")
Var3
##       Year Average Capital
## 1  FY 2003       10.647059
## 2  FY 2004       18.264706
## 3  FY 2005       10.264706
## 4  FY 2006       26.647059
## 5  FY 2007       24.939394
## 6  FY 2008       19.968750
## 7  FY 2009       20.121212
## 8  FY 2010       26.500000
## 9  FY 2011       25.147059
## 10 FY 2012       15.500000
## 11 FY 2013       10.882353
## 12 FY 2014       12.852941
## 13 FY 2015        8.264706
## 14 FY 2016       11.757576
## 15 FY 2017        6.818182
Var4 <- xtabs(~ Company + year, data = fmcg.cf)
Var4
##                             year
## Company                      FY 2003 FY 2004 FY 2005 FY 2006 FY 2007
##   Avanti feeds                     1       1       1       1       1
##   Bombay Burmah                    1       1       1       1       1
##   CCL Products                     1       1       1       1       1
##   Chaman Lal Setia                 1       1       1       1       1
##   Colgate                          1       1       1       1       1
##   Dabur                            1       1       1       1       1
##   Emami                            1       1       1       1       1
##   Eveready                         1       1       1       1       1
##   Gillette                         1       1       1       1       0
##   GM Breweries                     1       1       1       1       1
##   Godfrey                          1       1       1       1       1
##   Godrej                           1       1       1       1       1
##   Goodricke Group                  1       1       1       1       1
##   GSK                              1       1       1       1       1
##   Gujarat Ambuja Exports Ltd       1       1       1       1       1
##   Heritage food                    1       1       1       1       1
##   HUL                              1       1       1       1       1
##   Jayshree Tea                     1       1       1       1       1
##   Kohinoor Foods                   1       1       1       1       1
##   Kwality Ltd                      1       1       1       1       1
##   Marico                           1       1       1       1       1
##   P&G                              1       1       1       1       1
##   Radico Khaitan                   1       1       1       1       1
##   Rasoi                            1       1       1       1       1
##   Ruchi Soya                       1       1       1       1       1
##   Sanwari Consumers Ltd            1       1       1       1       1
##   Tata Coffee Ltd.                 1       1       1       1       1
##   Tata Global Beverages            1       1       1       1       1
##   TTK Healthcare                   1       1       1       1       1
##   United Breweries Ltd             1       1       1       1       1
##   United Spirits Ltd               1       1       1       1       1
##   Vadilal Ltd                      1       1       1       1       1
##   Venky's                          1       1       1       1       1
##   VST INDS                         1       1       1       1       1
##                             year
## Company                      FY 2008 FY 2009 FY 2010 FY 2011 FY 2012
##   Avanti feeds                     1       1       1       1       1
##   Bombay Burmah                    1       1       1       1       1
##   CCL Products                     1       1       1       1       1
##   Chaman Lal Setia                 1       1       1       1       1
##   Colgate                          1       1       1       1       1
##   Dabur                            1       1       1       1       1
##   Emami                            1       1       1       1       1
##   Eveready                         1       1       1       1       1
##   Gillette                         0       1       1       1       1
##   GM Breweries                     1       1       1       1       1
##   Godfrey                          1       1       1       1       1
##   Godrej                           1       1       1       1       1
##   Goodricke Group                  1       1       1       1       1
##   GSK                              1       1       1       1       1
##   Gujarat Ambuja Exports Ltd       1       1       1       1       1
##   Heritage food                    1       1       1       1       1
##   HUL                              0       0       1       1       1
##   Jayshree Tea                     1       1       1       1       1
##   Kohinoor Foods                   1       1       1       1       1
##   Kwality Ltd                      1       1       1       1       1
##   Marico                           1       1       1       1       1
##   P&G                              1       1       1       1       1
##   Radico Khaitan                   1       1       1       1       1
##   Rasoi                            1       1       1       1       1
##   Ruchi Soya                       1       1       1       1       1
##   Sanwari Consumers Ltd            1       1       1       1       1
##   Tata Coffee Ltd.                 1       1       1       1       1
##   Tata Global Beverages            1       1       1       1       1
##   TTK Healthcare                   1       1       1       1       1
##   United Breweries Ltd             1       1       1       1       1
##   United Spirits Ltd               1       1       1       1       1
##   Vadilal Ltd                      1       1       1       1       1
##   Venky's                          1       1       1       1       1
##   VST INDS                         1       1       1       1       1
##                             year
## Company                      FY 2013 FY 2014 FY 2015 FY 2016 FY 2017
##   Avanti feeds                     1       1       1       1       1
##   Bombay Burmah                    1       1       1       1       1
##   CCL Products                     1       1       1       1       1
##   Chaman Lal Setia                 1       1       1       1       1
##   Colgate                          1       1       1       1       1
##   Dabur                            1       1       1       1       1
##   Emami                            1       1       1       1       1
##   Eveready                         1       1       1       1       1
##   Gillette                         1       1       1       1       1
##   GM Breweries                     1       1       1       1       1
##   Godfrey                          1       1       1       1       1
##   Godrej                           1       1       1       1       1
##   Goodricke Group                  1       1       1       0       0
##   GSK                              1       1       1       1       1
##   Gujarat Ambuja Exports Ltd       1       1       1       1       1
##   Heritage food                    1       1       1       1       1
##   HUL                              1       1       1       1       1
##   Jayshree Tea                     1       1       1       1       1
##   Kohinoor Foods                   1       1       1       1       1
##   Kwality Ltd                      1       1       1       1       1
##   Marico                           1       1       1       1       1
##   P&G                              1       1       1       1       1
##   Radico Khaitan                   1       1       1       1       1
##   Rasoi                            1       1       1       1       1
##   Ruchi Soya                       1       1       1       1       1
##   Sanwari Consumers Ltd            1       1       1       1       1
##   Tata Coffee Ltd.                 1       1       1       1       1
##   Tata Global Beverages            1       1       1       1       1
##   TTK Healthcare                   1       1       1       1       1
##   United Breweries Ltd             1       1       1       1       1
##   United Spirits Ltd               1       1       1       1       1
##   Vadilal Ltd                      1       1       1       1       1
##   Venky's                          1       1       1       1       1
##   VST INDS                         1       1       1       1       1
boxplot(fmcg.cf$MCAP.Million.INR., horizontal=TRUE,
        xlab="Market captilization", las=1)

library(lattice)
histogram(~MCAP.Million.INR., data = fmcg.cf,
 main = "Market Cap", xlab="Rs in Million", col='red' )

library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(Revenue.Million.INR. ~ Company ,data=fmcg.cf, main="Revenue", xlab="Company", ylab="Revenue INR Millions", horizontal=TRUE)

##  [1] "192" "133" "136" "166" "239" "253" "255" "254" "58"  "50"  "296"
## [12] "324" "315" "331" "356" "371" "113" "404" "405" "419" "443" "434"
## [23] "445" "463" "477" "500" "72"
scatterplot.matrix(~Revenue.Million.INR.+Total.Debt.Million.INR.+Current.Ratio+Total.Debt.Equity+Accounts.Receivable.Turnover+ MCAP.Million.INR., data=fmcg.cf,
    main=" Mcap versus other variables")
## Warning: 'scatterplot.matrix' is deprecated.
## Use 'scatterplotMatrix' instead.
## See help("Deprecated") and help("car-deprecated").

scatterplot.matrix(~ Capital.Million.INR.+ Total.Inventory.Million.+ Cash.Ratio+Quick.Ratio+Total.Debt.Capital+Inventory.Turnover+ MCAP.Million.INR., data=fmcg.cf,
    main=" Mcap versus other variables")
## Warning: 'scatterplot.matrix' is deprecated.
## Use 'scatterplotMatrix' instead.
## See help("Deprecated") and help("car-deprecated").

interaction.plot(Company, MCAP.Million.INR., Capital.Million.INR., type="p", 
                 col=c("red","blue"), pch=c(20, 18),
                 main = "Market Capitalization")

cor(fmcg.cf$MCAP.Million.INR.,fmcg.cf$Cash.Ratio)
## [1] 0.02529334
cor(fmcg.cf$MCAP.Million.INR.,fmcg.cf$Total.Debt.Million.INR.)
## [1] 0.0648256
cor(fmcg.cf$MCAP.Million.INR.,fmcg.cf$Inventory.Turnover)
## [1] 0.012469
cor(fmcg.cf$MCAP.Million.INR.,fmcg.cf$Accounts.Receivable.Turnover)
## [1] -0.03102749
cor(fmcg.cf$MCAP.Million.INR.,fmcg.cf$Revenue.Million.INR.)
## [1] -0.02813166
cor.test(fmcg.cf$MCAP.Million.INR., fmcg.cf$Cash.Ratio)
## 
##  Pearson's product-moment correlation
## 
## data:  fmcg.cf$MCAP.Million.INR. and fmcg.cf$Cash.Ratio
## t = 0.56689, df = 502, p-value = 0.571
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.06218565  0.11238667
## sample estimates:
##        cor 
## 0.02529334
cor.test(fmcg.cf$MCAP.Million.INR., fmcg.cf$Inventory.Turnover)
## 
##  Pearson's product-moment correlation
## 
## data:  fmcg.cf$MCAP.Million.INR. and fmcg.cf$Inventory.Turnover
## t = 0.27939, df = 502, p-value = 0.7801
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.07495424  0.09970203
## sample estimates:
##      cor 
## 0.012469
cor.test(fmcg.cf$MCAP.Million.INR., fmcg.cf$Revenue.Million.INR.)
## 
##  Pearson's product-moment correlation
## 
## data:  fmcg.cf$MCAP.Million.INR. and fmcg.cf$Revenue.Million.INR.
## t = -0.63055, df = 502, p-value = 0.5286
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1151902  0.0593558
## sample estimates:
##         cor 
## -0.02813166
t.test(fmcg.cf$MCAP.Million.INR., fmcg.cf$Cash.Ratio)
## 
##  Welch Two Sample t-test
## 
## data:  fmcg.cf$MCAP.Million.INR. and fmcg.cf$Cash.Ratio
## t = 7.6866, df = 503, p-value = 7.99e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  48781.75 82281.59
## sample estimates:
##    mean of x    mean of y 
## 6.553210e+04 4.318254e-01
t.test(fmcg.cf$MCAP.Million.INR., fmcg.cf$Inventory.Turnover)
## 
##  Welch Two Sample t-test
## 
## data:  fmcg.cf$MCAP.Million.INR. and fmcg.cf$Inventory.Turnover
## t = 7.6862, df = 503, p-value = 8.013e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  48778.15 82277.99
## sample estimates:
##    mean of x    mean of y 
## 65532.103175     4.031746
t.test(fmcg.cf$MCAP.Million.INR., fmcg.cf$Revenue.Million.INR.)
## 
##  Welch Two Sample t-test
## 
## data:  fmcg.cf$MCAP.Million.INR. and fmcg.cf$Revenue.Million.INR.
## t = 7.6843, df = 503, p-value = 8.118e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  48762.35 82262.20
## sample estimates:
##   mean of x   mean of y 
## 65532.10317    19.82738
library(coefplot)
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
coefplot(M1, intercept=FALSE)