1. Reading and summary generation of the file Store24.csv
store24 <- read.csv(paste("Store24.csv", sep=""))
View(store24)
library(psych)
describe(store24)
##            vars  n       mean        sd     median    trimmed       mad
## store         1 75      38.00     21.79      38.00      38.00     28.17
## Sales         2 75 1205413.12 304531.31 1127332.00 1182031.25 288422.04
## Profit        3 75  276313.61  89404.08  265014.00  270260.34  90532.00
## MTenure       4 75      45.30     57.67      24.12      33.58     29.67
## CTenure       5 75      13.93     17.70       7.21      10.60      6.14
## Pop           6 75    9825.59   5911.67    8896.00    9366.07   7266.22
## Comp          7 75       3.79      1.31       3.63       3.66      0.82
## Visibility    8 75       3.08      0.75       3.00       3.07      0.00
## PedCount      9 75       2.96      0.99       3.00       2.97      1.48
## Res          10 75       0.96      0.20       1.00       1.00      0.00
## Hours24      11 75       0.84      0.37       1.00       0.92      0.00
## CrewSkill    12 75       3.46      0.41       3.50       3.47      0.34
## MgrSkill     13 75       3.64      0.41       3.59       3.62      0.45
## ServQual     14 75      87.15     12.61      89.47      88.62     15.61
##                  min        max      range  skew kurtosis       se
## store           1.00      75.00      74.00  0.00    -1.25     2.52
## Sales      699306.00 2113089.00 1413783.00  0.71    -0.09 35164.25
## Profit     122180.00  518998.00  396818.00  0.62    -0.21 10323.49
## MTenure         0.00     277.99     277.99  2.01     3.90     6.66
## CTenure         0.89     114.15     113.26  3.52    15.00     2.04
## Pop          1046.00   26519.00   25473.00  0.62    -0.23   682.62
## Comp            1.65      11.13       9.48  2.48    11.31     0.15
## Visibility      2.00       5.00       3.00  0.25    -0.38     0.09
## PedCount        1.00       5.00       4.00  0.00    -0.52     0.11
## Res             0.00       1.00       1.00 -4.60    19.43     0.02
## Hours24         0.00       1.00       1.00 -1.82     1.32     0.04
## CrewSkill       2.06       4.64       2.58 -0.43     1.64     0.05
## MgrSkill        2.96       4.62       1.67  0.27    -0.53     0.05
## ServQual       57.90     100.00      42.10 -0.66    -0.72     1.46
  1. mean and standard deviation of Profit
describe(store24$Profit)
##    vars  n     mean       sd median  trimmed   mad    min    max  range
## X1    1 75 276313.6 89404.08 265014 270260.3 90532 122180 518998 396818
##    skew kurtosis       se
## X1 0.62    -0.21 10323.49
  1. mean and standard deviation of MTenure
describe(store24$MTenure)
##    vars  n mean    sd median trimmed   mad min    max  range skew kurtosis
## X1    1 75 45.3 57.67  24.12   33.58 29.67   0 277.99 277.99 2.01      3.9
##      se
## X1 6.66
  1. mean and standard deviation of CTenure
describe(store24$CTenure)
##    vars  n  mean   sd median trimmed  mad  min    max  range skew kurtosis
## X1    1 75 13.93 17.7   7.21    10.6 6.14 0.89 114.15 113.26 3.52       15
##      se
## X1 2.04
  1. printing the {StoreID, Sales, Profit, MTenure, CTenure} of the Top 10 most profitable stores
Top10 <- store24[order(-store24$Profit),]
Top10[1:10,1:5]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550
  1. printing the {StoreID, Sales, Profit, MTenure, CTenure} of the Bottom 10 least profitable stores
Bottom10 <- store24[order(-store24$Profit),]
Bottom10[1:10,1:5]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550
  1. drawing a scatter plot of Profit vs. MTenure
library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(Profit ~ MTenure, data=store24,
            main="Scatterplot Profit vs MTenure",
            xlab="MTenure (in months)",
            ylab="Profit")

  1. drawing a scatter plot of Profit vs CTenure
scatterplot(Profit ~ CTenure, data=store24,
            main="Scatterplot Profit vs CTenure",
            xlab="CTenure (in months)",
            ylab="Profit")

  1. Measurement of Correlation using Correlation Matrix
round(cor(store24), 2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00
round
## function (x, digits = 0)  .Primitive("round")
  1. Measurement of Correlation between Profit and MTenure
round(cor(store24$Profit, store24$MTenure), 2)
## [1] 0.44
  1. Measurement of Correlation between Profit and CTenure
round(cor(store24$Profit, store24$CTenure), 2)
## [1] 0.26
  1. Constructing Corrgram for the dataset
library(corrgram)
corrgram(store24, order=FALSE, lower.panel=panel.shade,
         upper.panel=panel.pie, text.panel=panel.txt,
         main="Corrgram of store variables")

-> Studying the above correlation matrix , we can see that there is a strong positive relationship between Profit and MTenure with a correlation coefficient,r value = 0.44 . Also, Profit is having a weak positive correlation with CTenure having r value of 0.26 . Profit is having a strong positive correlation with Sales having r value of 0.92 . Profit is having a strong positive correlation with Pop having r value of 0.43 . Profit is having a weak negative correlation with Comp having r value of -0.33

  1. Pearson’s Correlation test on the correlation between Profit and MTenure
cor.test(store24$Profit, store24$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store24$Profit and store24$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

-> here the p value is 8.19e-05 which comes out to be less than 0.05, null hypothesis is rejected and alternate hypothesis is accepted. This means correlation exists.

  1. Pearson’s Correlation test on the correlation between Profit and CTenure
cor.test(store24$Profit, store24$CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store24$Profit and store24$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

-> here the p value is 0.0256 which comes out to be less than 0.05, null hypothesis is rejected and alternate hypothesis is accepted. This means correlation exists.

  1. Regression Analysis
regress <- lm(Profit ~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility, data= store24)
summary(regress)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store24)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

-> The p value comes out to 5.382e-12 which is smaller than 0.05 and hence we get to know that the developed model is statistically significant and the adjusted r square value is 0.594, which implies the 60% variance is explained by the model.

  1. explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05) -> 1. MTenure 2. CTenure 3. Comp 4.Pop 5. PedCount 6. Res 7. Hours24

  2. explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05) -> 1. Visibility

  3. expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month? -> Through the regression analysis, we can see that if Manager’s tenure increases by one month, then the Profit increases by $760.99

  4. expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month? -> Through the regression analysis, if Crew’s tenure increases by one month, then the Profit increases by $944.98

  5. Executive Summary -> The Managers Tenure has a mean value of 45.30~ 45 months and a standard deviation of57.67~58 days. An increase in MTenure of 1 month, increases Profit by approx. $761 .

-> The Crew Tenure has a mean value of 14 months and a standard deviation of 18 days. An increase in one month in Crew’s Tenure, causes increase in Profit by $945.

-> The manager tenure is more signifivant as compared with the Crew Tenure in terms of Profit Contribution.

-> If the pedestrian count rises by 1 point, then the profit rises by $34087 which proves it to be a major contributor and if the store location is situated in the residential area,it increases profit of $91585.

-> If the store is operated 24 hours, it raises the profit by $63233.