Reference: 应用多元统计分析 高惠璇 Charter 3
Detailed data attached at the end
Detailed code see github.com
单总体均值检验
mu0=c(4, 50, 10)
Sigma0=var(female.data)
## var known
result1=mu.test.known(female.data, mu0, Sigma0, alpha=0.05)
result1
## $Reject.area
## Obs >1-alpha
## Reject 8.135075 7.814728
##
## $p.value
## [,1]
## [1,] 0.04330106
## var unknown
result2=mu.test(female.data, mu0)
result2
## $p.value
## [,1]
## [1,] 0.1010612
两总体等方差均值检验
result3=two.mu.test(japan, usa)
result3
## $p.value
## [,1]
## [1,] 0.003705807
多总体等方差均值检验 – 多元方差分析
result4=multi.mu.test(health, 3) ##3 groups
result4
## $p.value
## [1] 0.003517917
单总体正态分布方差检验
Sigma0=matrix(c(100,10,0,6,100,-5,0,0,4),nrow=3)
result5=var.test(female.data, Sigma0)
result5
## $p.value
## [1] 2.168687e-11
多总体正态分布方差检验
result6=multi.var.test(health, 3)
result6
## $p.value
## [1] 0.4373646
多总体正态分布均值方差同时检验
result7=multi.mean.var.test(health, k=3)
result7
## $p.value
## [1] 0.03372988
多元正态独立性检验
Simulation: Run the function for 1000 times, each time generating 200 data which have NID(1, 0; 0.5, 0, 0, 0.5), and proceeding independence test. Record t-value and p-value each time. If p-value is significant, rejects the null hypothesis, i.e. the test fails. The average of the number of failures is calculated to evaluate the test performance.
for(i in 1:times)
{
mydata <- as.data.frame(mvrnorm(n, mu, Sigma))
subvector <- c(1,2)
k=2 # divided into k sub-vector to test independence
re=norm.independent.test(mydata, subvector, k)
# If p-value is significant, rejects the null hypothesis,
# i.e. the test fails.
t[i]=re$t
pi[i]=re$p.value
if(re$p.value<0.05)
{
p[i]=1
}
}
sum(p) ## total fail times
## [1] 56
t[18] ## t-value of the 18th result
## [1] 0.2462006
pi[18] ## p-value of the 18th result
## [1] 0.6197632
Example:
subvector <- c(1,2,3)
k=3
result8=norm.independent.test(female.data, subvector, k)
result8
## $t
## [1] 8.400652
##
## $p.value
## [1] 0.03841802
Appendix: datasets
female.data
| 3.7 |
48.5 |
9.3 |
| 3.8 |
47.2 |
10.9 |
| 3.1 |
55.5 |
9.7 |
| 2.4 |
24.8 |
14.0 |
| 6.7 |
47.4 |
8.5 |
| 3.9 |
36.9 |
12.7 |
| 3.5 |
27.8 |
9.8 |
| 1.5 |
13.5 |
10.1 |
| 4.5 |
71.6 |
8.2 |
| 4.1 |
44.1 |
11.2 |
| 4.7 |
65.1 |
8.0 |
| 3.2 |
53.2 |
12.0 |
| 4.6 |
36.1 |
7.9 |
| 7.2 |
33.1 |
7.6 |
| 5.4 |
54.1 |
11.3 |
| 4.5 |
58.8 |
12.3 |
| 4.5 |
40.2 |
8.4 |
| 8.5 |
56.4 |
7.1 |
| 6.5 |
52.8 |
10.9 |
| 5.5 |
40.9 |
9.4 |
japan
| 65 |
35 |
25 |
60 |
| 75 |
50 |
20 |
55 |
| 60 |
45 |
35 |
65 |
| 75 |
40 |
40 |
70 |
| 70 |
30 |
30 |
50 |
| 55 |
40 |
35 |
65 |
| 60 |
45 |
30 |
60 |
| 65 |
40 |
25 |
60 |
| 60 |
50 |
30 |
70 |
| 55 |
55 |
35 |
75 |
usa
| 55 |
55 |
40 |
65 |
| 50 |
60 |
45 |
70 |
| 45 |
45 |
35 |
75 |
| 50 |
50 |
50 |
70 |
| 55 |
50 |
30 |
75 |
| 60 |
40 |
45 |
60 |
| 65 |
55 |
45 |
75 |
| 50 |
60 |
35 |
80 |
| 40 |
45 |
30 |
65 |
| 45 |
50 |
45 |
70 |
health
| 260 |
75 |
40 |
18 |
1 |
| 200 |
72 |
34 |
17 |
1 |
| 240 |
87 |
45 |
18 |
1 |
| 170 |
65 |
39 |
17 |
1 |
| 270 |
110 |
39 |
24 |
1 |
| 205 |
130 |
34 |
23 |
1 |
| 190 |
69 |
27 |
15 |
1 |
| 200 |
46 |
45 |
15 |
1 |
| 250 |
117 |
21 |
20 |
1 |
| 200 |
107 |
28 |
20 |
1 |
| 225 |
130 |
36 |
11 |
1 |
| 210 |
125 |
26 |
17 |
1 |
| 170 |
64 |
31 |
14 |
1 |
| 270 |
76 |
33 |
13 |
1 |
| 190 |
60 |
34 |
16 |
1 |
| 280 |
81 |
20 |
18 |
1 |
| 310 |
119 |
25 |
15 |
1 |
| 270 |
57 |
31 |
8 |
1 |
| 250 |
67 |
31 |
14 |
1 |
| 260 |
135 |
39 |
29 |
1 |
| 310 |
122 |
30 |
21 |
2 |
| 310 |
60 |
35 |
18 |
2 |
| 190 |
40 |
27 |
15 |
2 |
| 225 |
65 |
34 |
16 |
2 |
| 170 |
65 |
37 |
16 |
2 |
| 210 |
82 |
31 |
17 |
2 |
| 280 |
67 |
37 |
18 |
2 |
| 210 |
38 |
36 |
17 |
2 |
| 280 |
65 |
30 |
23 |
2 |
| 200 |
76 |
40 |
17 |
2 |
| 200 |
76 |
39 |
20 |
2 |
| 280 |
94 |
26 |
11 |
2 |
| 190 |
60 |
33 |
17 |
2 |
| 295 |
55 |
30 |
16 |
2 |
| 270 |
125 |
24 |
21 |
2 |
| 280 |
120 |
32 |
18 |
2 |
| 240 |
62 |
32 |
20 |
2 |
| 280 |
69 |
29 |
20 |
2 |
| 370 |
70 |
30 |
20 |
2 |
| 280 |
40 |
37 |
17 |
2 |
| 320 |
64 |
39 |
17 |
3 |
| 260 |
59 |
37 |
11 |
3 |
| 360 |
88 |
28 |
26 |
3 |
| 295 |
100 |
36 |
12 |
3 |
| 270 |
65 |
32 |
21 |
3 |
| 380 |
114 |
36 |
21 |
3 |
| 240 |
55 |
42 |
10 |
3 |
| 260 |
55 |
34 |
20 |
3 |
| 260 |
110 |
29 |
20 |
3 |
| 295 |
73 |
33 |
21 |
3 |
| 240 |
114 |
38 |
18 |
3 |
| 310 |
103 |
32 |
18 |
3 |
| 330 |
112 |
21 |
11 |
3 |
| 345 |
127 |
24 |
20 |
3 |
| 250 |
62 |
22 |
16 |
3 |
| 260 |
59 |
21 |
19 |
3 |
| 225 |
100 |
34 |
30 |
3 |
| 345 |
120 |
36 |
18 |
3 |
| 360 |
107 |
25 |
23 |
3 |
| 250 |
117 |
36 |
16 |
3 |