Detailed data attached at the end
Detailed code see github.com
For more details of Parallel Analysis, see Factor Retention Decisions in Exploratory Factor Analysis: A Tutorial on Parallel Analysis
判断公共因子个数的方法:
当摇摆不定时, 高估因子比低估好, 因为高估因子较少曲解“真实”情况
library(psych)
fa.parallel(mydata, fa = "fa", n.iter = 100,
show.legend = FALSE, main = "Scree plot with parallel analysis")
## Parallel analysis suggests that the number of factors = 4 and the number of components = NA
按照parallel analysis的结果, 选取四个因子
fa0=factanal(~., factors=4, data=mydata, rotation="none") ##不旋转因子难以解释
print(fa0)
##
## Call:
## factanal(x = ~., factors = 4, data = mydata, rotation = "none")
##
## Uniquenesses:
## FL APP AA LA SC LC HON SMS EXP DRV AMB GSP
## 0.443 0.685 0.521 0.185 0.119 0.198 0.339 0.138 0.357 0.226 0.137 0.153
## POT KJ SUIT
## 0.090 0.005 0.252
##
## Loadings:
## Factor1 Factor2 Factor3 Factor4
## FL 0.473 0.549 -0.177
## APP 0.334 0.426 0.140
## AA -0.272 0.475 0.336 0.258
## LA 0.700 0.124 0.555
## SC 0.552 0.641 -0.396
## LC 0.600 0.649 -0.134
## HON 0.465 -0.273 0.603
## SMS 0.634 0.643 -0.205
## EXP 0.237 0.189 0.717 -0.192
## DRV 0.673 0.538 -0.155
## AMB 0.618 0.652 -0.137 -0.191
## GSP 0.625 0.664 0.115
## POT 0.617 0.671 0.178 0.220
## KJ 0.992 -0.105
## SUIT 0.440 0.372 0.621 -0.175
##
## Factor1 Factor2 Factor3 Factor4
## SS loadings 5.023 3.452 1.647 1.033
## Proportion Var 0.335 0.230 0.110 0.069
## Cumulative Var 0.335 0.565 0.675 0.744
##
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 84 on 51 degrees of freedom.
## The p-value is 0.00247
fa1=factanal(~., factors=4, data=mydata, scores="Bartlett") ##默认旋转
print(fa1)
##
## Call:
## factanal(x = ~., factors = 4, data = mydata, scores = "Bartlett")
##
## Uniquenesses:
## FL APP AA LA SC LC HON SMS EXP DRV AMB GSP
## 0.443 0.685 0.521 0.185 0.119 0.198 0.339 0.138 0.357 0.226 0.137 0.153
## POT KJ SUIT
## 0.090 0.005 0.252
##
## Loadings:
## Factor1 Factor2 Factor3 Factor4
## FL 0.129 0.717 0.113 -0.117
## APP 0.458 0.142 0.243 0.164
## AA 0.126 0.677
## LA 0.231 0.239 0.838
## SC 0.918 0.142
## LC 0.838 0.111 0.291
## HON 0.252 -0.216 0.742
## SMS 0.885 0.258
## EXP 0.778 0.165
## DRV 0.767 0.389 0.172
## AMB 0.904 0.181
## GSP 0.792 0.275 0.351 0.148
## POT 0.735 0.349 0.432 0.247
## KJ 0.424 0.389 0.554 -0.598
## SUIT 0.364 0.770 0.142
##
## Factor1 Factor2 Factor3 Factor4
## SS loadings 5.570 2.473 2.099 1.013
## Proportion Var 0.371 0.165 0.140 0.068
## Cumulative Var 0.371 0.536 0.676 0.744
##
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 84 on 51 degrees of freedom.
## The p-value is 0.00247
结果显示因子变得更好解释了:
apply(fa1$scores,2,which.max) ## 各因子得分最高者
## Factor1 Factor2 Factor3 Factor4
## 10 42 46 46
apply(fa1$scores,2,which.min) ## 各因子得分最低者
## Factor1 Factor2 Factor3 Factor4
## 42 47 42 29
plot(fa1$scores[, 1:2], type="n", main="前两个公共因子得分图")
text(fa1$scores[,1], fa1$scores[,2])
| X | FL | APP | AA | LA | SC | LC | HON | SMS | EXP | DRV | AMB | GSP | POT | KJ | SUIT |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 6 | 7 | 2 | 5 | 8 | 7 | 8 | 8 | 3 | 8 | 9 | 7 | 5 | 7 | 10 |
| 2 | 9 | 10 | 5 | 8 | 10 | 9 | 9 | 10 | 5 | 9 | 9 | 8 | 8 | 8 | 10 |
| 3 | 7 | 8 | 3 | 6 | 9 | 8 | 9 | 7 | 4 | 9 | 9 | 8 | 6 | 8 | 10 |
| 4 | 5 | 6 | 8 | 5 | 6 | 5 | 9 | 2 | 8 | 4 | 5 | 8 | 7 | 6 | 5 |
| 5 | 6 | 8 | 8 | 8 | 4 | 4 | 9 | 5 | 8 | 5 | 5 | 8 | 8 | 7 | 7 |
| 6 | 7 | 7 | 7 | 6 | 8 | 7 | 10 | 5 | 9 | 6 | 5 | 8 | 6 | 6 | 6 |
| 7 | 9 | 9 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 8 | 10 | 8 | 9 | 8 | 10 |
| 8 | 9 | 9 | 9 | 8 | 9 | 9 | 8 | 8 | 10 | 9 | 10 | 9 | 9 | 9 | 10 |
| 9 | 9 | 9 | 7 | 8 | 8 | 8 | 8 | 5 | 9 | 8 | 9 | 8 | 8 | 8 | 10 |
| 10 | 4 | 7 | 10 | 2 | 10 | 10 | 7 | 10 | 3 | 10 | 10 | 10 | 9 | 3 | 10 |
| 11 | 4 | 7 | 10 | 0 | 10 | 8 | 3 | 9 | 5 | 9 | 10 | 8 | 10 | 2 | 5 |
| 12 | 4 | 7 | 10 | 4 | 10 | 10 | 7 | 8 | 2 | 8 | 8 | 10 | 10 | 3 | 7 |
| 13 | 6 | 9 | 8 | 10 | 5 | 4 | 9 | 4 | 4 | 4 | 5 | 4 | 7 | 6 | 8 |
| 14 | 8 | 9 | 8 | 9 | 6 | 3 | 8 | 2 | 5 | 2 | 6 | 6 | 7 | 5 | 6 |
| 15 | 4 | 8 | 8 | 7 | 5 | 4 | 10 | 2 | 7 | 5 | 3 | 6 | 6 | 4 | 6 |
| 16 | 6 | 9 | 6 | 7 | 8 | 9 | 8 | 9 | 8 | 8 | 7 | 6 | 8 | 6 | 10 |
| 17 | 8 | 7 | 7 | 7 | 9 | 5 | 8 | 6 | 6 | 7 | 8 | 6 | 6 | 7 | 8 |
| 18 | 6 | 8 | 8 | 4 | 8 | 8 | 6 | 4 | 3 | 3 | 6 | 7 | 2 | 6 | 4 |
| 19 | 6 | 7 | 8 | 4 | 7 | 8 | 5 | 4 | 4 | 2 | 6 | 8 | 3 | 5 | 4 |
| 20 | 4 | 8 | 7 | 8 | 8 | 9 | 10 | 5 | 2 | 6 | 7 | 9 | 8 | 8 | 9 |
| 21 | 3 | 8 | 6 | 8 | 8 | 8 | 10 | 5 | 3 | 6 | 7 | 8 | 8 | 5 | 8 |
| 22 | 9 | 8 | 7 | 8 | 9 | 10 | 10 | 10 | 3 | 10 | 8 | 10 | 8 | 10 | 8 |
| 23 | 7 | 10 | 7 | 9 | 9 | 9 | 10 | 10 | 3 | 9 | 9 | 10 | 9 | 10 | 8 |
| 24 | 9 | 8 | 7 | 10 | 8 | 10 | 10 | 10 | 2 | 9 | 7 | 9 | 9 | 10 | 8 |
| 25 | 6 | 9 | 7 | 7 | 4 | 5 | 9 | 3 | 2 | 4 | 4 | 4 | 4 | 5 | 4 |
| 26 | 7 | 8 | 7 | 8 | 5 | 4 | 8 | 2 | 3 | 4 | 5 | 6 | 5 | 5 | 6 |
| 27 | 2 | 10 | 7 | 9 | 8 | 9 | 10 | 5 | 3 | 5 | 6 | 7 | 6 | 4 | 5 |
| 28 | 6 | 3 | 5 | 3 | 5 | 3 | 5 | 0 | 0 | 3 | 3 | 0 | 0 | 5 | 0 |
| 29 | 4 | 3 | 4 | 3 | 3 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 5 | 0 |
| 30 | 4 | 6 | 5 | 6 | 9 | 4 | 10 | 3 | 1 | 3 | 3 | 2 | 2 | 7 | 3 |
| 31 | 5 | 5 | 4 | 7 | 8 | 4 | 10 | 3 | 2 | 5 | 5 | 3 | 4 | 8 | 3 |
| 32 | 3 | 3 | 5 | 7 | 7 | 9 | 10 | 3 | 2 | 5 | 3 | 7 | 5 | 5 | 2 |
| 33 | 2 | 3 | 5 | 7 | 7 | 9 | 10 | 3 | 2 | 2 | 3 | 6 | 4 | 5 | 2 |
| 34 | 3 | 4 | 6 | 4 | 3 | 3 | 8 | 1 | 1 | 3 | 3 | 3 | 2 | 5 | 2 |
| 35 | 6 | 7 | 4 | 3 | 3 | 0 | 9 | 0 | 1 | 0 | 2 | 3 | 1 | 5 | 3 |
| 36 | 9 | 8 | 5 | 5 | 6 | 6 | 8 | 2 | 2 | 2 | 4 | 5 | 6 | 6 | 3 |
| 37 | 4 | 9 | 6 | 4 | 10 | 8 | 8 | 9 | 1 | 3 | 9 | 7 | 5 | 3 | 2 |
| 38 | 4 | 9 | 6 | 6 | 9 | 9 | 7 | 9 | 1 | 2 | 10 | 8 | 5 | 5 | 2 |
| 39 | 10 | 6 | 9 | 10 | 9 | 10 | 10 | 10 | 10 | 10 | 8 | 10 | 10 | 10 | 10 |
| 40 | 10 | 6 | 9 | 10 | 9 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 41 | 10 | 7 | 8 | 0 | 2 | 1 | 2 | 0 | 10 | 2 | 0 | 3 | 0 | 0 | 10 |
| 42 | 10 | 3 | 8 | 0 | 1 | 1 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 10 |
| 43 | 3 | 4 | 9 | 8 | 2 | 4 | 5 | 3 | 6 | 2 | 1 | 3 | 3 | 3 | 8 |
| 44 | 7 | 7 | 7 | 6 | 9 | 8 | 8 | 6 | 8 | 8 | 10 | 8 | 8 | 6 | 5 |
| 45 | 9 | 6 | 10 | 9 | 7 | 7 | 10 | 2 | 1 | 5 | 5 | 7 | 8 | 4 | 5 |
| 46 | 9 | 8 | 10 | 10 | 7 | 9 | 10 | 3 | 1 | 5 | 7 | 9 | 9 | 4 | 4 |
| 47 | 0 | 7 | 10 | 3 | 5 | 0 | 10 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 |
| 48 | 0 | 6 | 10 | 1 | 5 | 0 | 10 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 |