Run the regression: Test Score explained by Student-Teacher Ratio (STR) and percentage of English learners. Test the hypothesis that a change in STR has no effect on test scores once we control for percentage of English learners.
library("AER")
data("CASchools")
attach(CASchools)
head(CASchools)
teacher_stu_ratio <- CASchools$students/CASchools$teachers
model1<-lm(CASchools$math~teacher_stu_ratio+CASchools$english)
df_eng<-data.frame(CASchools[,c(12,14)],teacher_stu_ratio)
plot(df_eng, pch=10, col="blue", main="All Correlations Presented")

summary(model1)
Call:
lm(formula = CASchools$math ~ teacher_stu_ratio + CASchools$english)
Residuals:
Min 1Q Median 3Q Max
-48.230 -11.579 0.040 9.794 48.290
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 680.1894 7.8751 86.373 <2e-16 ***
teacher_stu_ratio -0.9129 0.4041 -2.259 0.0244 *
CASchools$english -0.5655 0.0418 -13.528 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 15.37 on 417 degrees of freedom
Multiple R-squared: 0.3316, Adjusted R-squared: 0.3284
F-statistic: 103.4 on 2 and 417 DF, p-value: < 2.2e-16
We see the STR is significant with .024 P value and -2.25 T test.The estimated coefficient is ~ -0.9. The statistic can be computed:
(-0.9-0) / 0.4
[1] -2.25
Construct a 90% confidence interval for the coefficient on STR in the above model.
-0.9+1.64*0.4
[1] -0.244
-0.9-1.64*0.4
[1] -1.556
Add the independent variable expenditures per pupil to the above model.
model2<-lm(CASchools$math~teacher_stu_ratio+CASchools$english+CASchools$expenditure)
Note the effect of STR on test scores before and after adding the expenditures in the district.
summary(model2)
Call:
lm(formula = CASchools$math ~ teacher_stu_ratio + CASchools$english +
CASchools$expenditure)
Residuals:
Min 1Q Median 3Q Max
-50.051 -11.339 -0.419 10.324 48.086
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 653.590525 16.234014 40.261 <2e-16 ***
teacher_stu_ratio -0.318301 0.513019 -0.620 0.5353
CASchools$english -0.570080 0.041750 -13.654 <2e-16 ***
CASchools$expenditure 0.002822 0.001508 1.872 0.0619 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 15.32 on 416 degrees of freedom
Multiple R-squared: 0.3372, Adjusted R-squared: 0.3324
F-statistic: 70.54 on 3 and 416 DF, p-value: < 2.2e-16
It’s no longer significant!
What is the effect on standard errors when expenditure was added?
Standard erorr was incraesed from .4 to .51.
Test the joint hypothesis that neither STR nor expenditure per pupil have an effect on test scores.
model3<-lm(CASchools$math~teacher_stu_ratio+CASchools$expenditure)
summary(model3)
Call:
lm(formula = CASchools$math ~ teacher_stu_ratio + CASchools$expenditure)
Residuals:
Min 1Q Median 3Q Max
-45.549 -13.332 -0.546 12.872 52.614
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 676.183721 19.411041 34.835 < 2e-16 ***
teacher_stu_ratio -1.601647 0.606192 -2.642 0.00855 **
CASchools$expenditure 0.001622 0.001809 0.897 0.37048
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 18.42 on 417 degrees of freedom
Multiple R-squared: 0.04009, Adjusted R-squared: 0.03549
F-statistic: 8.708 on 2 and 417 DF, p-value: 0.0001972
Since we expect both coefficients to be 0 but STR is not. #### Why can’t you just test the individual coefficients one at a time to answer this question? One at a time test is not like the joint hypothesis test since it requires multiply tests that actually change the .5 threshold to accept false results.
Use the F-statistic to test the joint hypothesis. Calculate the rule of thumb F statistic. Why is it different from the F statistic?
model3<-lm(CASchools$math~teacher_stu_ratio+CASchools$expenditure)
model4<-lm(CASchools$math~teacher_stu_ratio*0+CASchools$expenditure*0)
par(mfrow = c(2, 2))
plot(model3)

par(mfrow = c(2, 2))
plot(model4)

ssr_dif<- (sum((residuals(model4))^2)-sum((residuals(model3))^2)) / 2
ssr_dif
[1] 205829.1
ssr_norm<-(sum((residuals(model3))^2))
denom <- (420-2-1)
ssr_norm / denom
[1] 339.2384
ssr_dif/ssr_norm
[1] 606.7388
Check:
qf(.95, df1 = 417,2)
[1] 19.49333
Differences probably because of homoskadasticity issues.
LS0tCnRpdGxlOiAiNC4xIE11bHRpcGxlIFJlZ3Jlc3Npb24iCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KIyMjIyBSdW4gdGhlIHJlZ3Jlc3Npb246IFRlc3QgU2NvcmUgZXhwbGFpbmVkIGJ5IFN0dWRlbnQtVGVhY2hlciBSYXRpbyAoU1RSKSBhbmQgcGVyY2VudGFnZSBvZiBFbmdsaXNoIGxlYXJuZXJzLiBUZXN0IHRoZSBoeXBvdGhlc2lzIHRoYXQgYSBjaGFuZ2UgaW4gU1RSIGhhcyBubyBlZmZlY3Qgb24gdGVzdCBzY29yZXMgb25jZSB3ZSBjb250cm9sIGZvciBwZXJjZW50YWdlIG9mIEVuZ2xpc2ggbGVhcm5lcnMuCmBgYHtyfQpsaWJyYXJ5KCJBRVIiKQpkYXRhKCJDQVNjaG9vbHMiKQphdHRhY2goQ0FTY2hvb2xzKQpoZWFkKENBU2Nob29scykKYGBgCgpgYGB7cn0KdGVhY2hlcl9zdHVfcmF0aW8gPC0gQ0FTY2hvb2xzJHN0dWRlbnRzL0NBU2Nob29scyR0ZWFjaGVycwptb2RlbDE8LWxtKENBU2Nob29scyRtYXRofnRlYWNoZXJfc3R1X3JhdGlvK0NBU2Nob29scyRlbmdsaXNoKQpkZl9lbmc8LWRhdGEuZnJhbWUoQ0FTY2hvb2xzWyxjKDEyLDE0KV0sdGVhY2hlcl9zdHVfcmF0aW8pICAKcGxvdChkZl9lbmcsIHBjaD0xMCwgY29sPSJibHVlIiwgbWFpbj0iQWxsIENvcnJlbGF0aW9ucyBQcmVzZW50ZWQiKQpgYGAKCmBgYHtyfQpzdW1tYXJ5KG1vZGVsMSkKYGBgCiMjIyMgV2Ugc2VlIHRoZSBTVFIgaXMgc2lnbmlmaWNhbnQgd2l0aCAuMDI0IFAgdmFsdWUgYW5kIC0yLjI1IFQgdGVzdC5UaGUgZXN0aW1hdGVkIGNvZWZmaWNpZW50IGlzIH4gIC0wLjkuIFRoZSBzdGF0aXN0aWMgY2FuIGJlIGNvbXB1dGVkOgpgYGB7cn0KKC0wLjktMCkgLyAgMC40ICM8LXRoZSBjb2VmZmljaWVudCBtaW51ZXMgbnVsbCBoeXBvdGhlc2lzIG92ZXIgU0UuCmBgYAoKIyMjIyBDb25zdHJ1Y3QgYSA5MCUgY29uZmlkZW5jZSBpbnRlcnZhbCBmb3IgdGhlIGNvZWZmaWNpZW50IG9uIFNUUiBpbiB0aGUgYWJvdmUgbW9kZWwuCmBgYHtyfQotMC45KzEuNjQqMC40Ci0wLjktMS42NCowLjQKYGBgCgojIyMjIEFkZCB0aGUgaW5kZXBlbmRlbnQgdmFyaWFibGUgZXhwZW5kaXR1cmVzIHBlciBwdXBpbCB0byB0aGUgYWJvdmUgbW9kZWwuCmBgYHtyfQptb2RlbDI8LWxtKENBU2Nob29scyRtYXRofnRlYWNoZXJfc3R1X3JhdGlvK0NBU2Nob29scyRlbmdsaXNoK0NBU2Nob29scyRleHBlbmRpdHVyZSkKYGBgCiMjIyMgTm90ZSB0aGUgZWZmZWN0IG9mIFNUUiBvbiB0ZXN0IHNjb3JlcyBiZWZvcmUgYW5kIGFmdGVyIGFkZGluZyB0aGUgZXhwZW5kaXR1cmVzIGluIHRoZSBkaXN0cmljdC4KYGBge3J9CnN1bW1hcnkobW9kZWwyKQpgYGAKSXQncyBubyBsb25nZXIgc2lnbmlmaWNhbnQhCgojIyMjIFdoYXQgaXMgdGhlIGVmZmVjdCBvbiBzdGFuZGFyZCBlcnJvcnMgd2hlbiBleHBlbmRpdHVyZSB3YXMgYWRkZWQ/ClN0YW5kYXJkIGVyb3JyIHdhcyBpbmNyYWVzZWQgZnJvbSAuNCB0byAuNTEuCgojIyMjIFRlc3QgdGhlIGpvaW50IGh5cG90aGVzaXMgdGhhdCBuZWl0aGVyIFNUUiBub3IgZXhwZW5kaXR1cmUgcGVyIHB1cGlsIGhhdmUgYW4gZWZmZWN0IG9uIHRlc3Qgc2NvcmVzLgpgYGB7cn0KbW9kZWwzPC1sbShDQVNjaG9vbHMkbWF0aH50ZWFjaGVyX3N0dV9yYXRpbytDQVNjaG9vbHMkZXhwZW5kaXR1cmUpCnN1bW1hcnkobW9kZWwzKQpgYGAKU2luY2Ugd2UgZXhwZWN0IGJvdGggY29lZmZpY2llbnRzIHRvIGJlIDAgYnV0IFNUUiBpcyBub3QuCiMjIyMgV2h5IGNhbuKAmXQgeW91IGp1c3QgdGVzdCB0aGUgaW5kaXZpZHVhbCBjb2VmZmljaWVudHMgb25lIGF0IGEgdGltZSB0byBhbnN3ZXIgdGhpcyBxdWVzdGlvbj8KT25lIGF0IGEgdGltZSB0ZXN0IGlzIG5vdCBsaWtlIHRoZSBqb2ludCBoeXBvdGhlc2lzIHRlc3Qgc2luY2UgaXQgcmVxdWlyZXMgbXVsdGlwbHkgdGVzdHMgdGhhdCBhY3R1YWxseSBjaGFuZ2UgdGhlIC41IHRocmVzaG9sZCB0byBhY2NlcHQgZmFsc2UgcmVzdWx0cy4KCiMjIyMgV2hhdCBoYXBwZW5zIGlmIHRoZSByZWdyZXNzb3JzIGFyZSBjb3JyZWxhdGVkPyBIb3cgY2FuIHlvdSB1c2UgdGhlIGFkanVzdGVkIFItc3F1YXJlZCB0byBzcGVjaWZ5IGEgZ29vZCBtb2RlbCBpbiBjYXNlIG9mIHN1Y2ggY29ycmVsYXRpb24/CldlIHVzZSBhZGp1c3RlZCBSIHNxdWFyZWQ/CgoiQmVjYXVzZSB0aGUgdmFyaWFuY2Ugb2YgdGhlIHNhbXBsaW5nIGRpc3RyaWJ1dGlvbiBvZiB0aGUgcmVncmVzc2lvbiBjb2VmZmljaWVudCB3b3VsZCBiZSBsYXJnZXIgKGJ5IGEgZmFjdG9yIG9mIHRoZSBWSUYpIGlmIGl0IHdlcmUgY29ycmVsYXRlZCB3aXRoIG90aGVyIHZhcmlhYmxlcyBpbiB0aGUgbW9kZWwsIHRoZSBwLXZhbHVlcyB3b3VsZCBiZSBoaWdoZXIgKGkuZS4sIGxlc3Mgc2lnbmlmaWNhbnQpIHRoYW4gdGhleSBvdGhlcndpc2Ugd291bGQuClRoZSB2YXJpYW5jZXMgb2YgdGhlIHJlZ3Jlc3Npb24gY29lZmZpY2llbnRzIHdvdWxkIGJlIGxhcmdlciwgYXMgYWxyZWFkeSBkaXNjdXNzZWQuCkluIGdlbmVyYWwsIHRoaXMgaXMgaGFyZCB0byBrbm93IHdpdGhvdXQgc29sdmluZyBmb3IgdGhlIG1vZGVsLiBUeXBpY2FsbHksIGlmIG9ubHkgb25lIG9mIHR3byBpcyBzaWduaWZpY2FudCwgaXQgd2lsbCBiZSB0aGUgb25lIHRoYXQgaGFkIHRoZSBzdHJvbmdlciBiaXZhcmlhdGUgY29ycmVsYXRpb24gd2l0aCBZWS4KSG93IHRoZSBwcmVkaWN0ZWQgdmFsdWVzIGFuZCB0aGVpciB2YXJpYW5jZSB3b3VsZCBjaGFuZ2UgaXMgcXVpdGUgY29tcGxpY2F0ZWQuIEl0IGRlcGVuZHMgb24gaG93IHN0cm9uZ2x5IGNvcnJlbGF0ZWQgdGhlIHZhcmlhYmxlcyBhcmUgYW5kIHRoZSBtYW5uZXIgaW4gd2hpY2ggdGhleSBhcHBlYXIgdG8gYmUgYXNzb2NpYXRlZCB3aXRoIHlvdXIgcmVzcG9uc2UgdmFyaWFibGUgaW4geW91ciBkYXRhLiBSZWdhcmRpbmcgdGhpcyBpc3N1ZSwgaXQgbWF5IGhlbHAgeW91IHRvIHJlYWQgbXkgYW5zd2VyIGhlcmU6IElzIHRoZXJlIGEgZGlmZmVyZW5jZSBiZXR3ZWVuICdjb250cm9sbGluZyBmb3InIGFuZCAnaWdub3JpbmcnIG90aGVyIHZhcmlhYmxlcyBpbiBtdWx0aXBsZSByZWdyZXNzaW9uPyIKCgojIyMjIFVzZSB0aGUgRi1zdGF0aXN0aWMgdG8gdGVzdCB0aGUgam9pbnQgaHlwb3RoZXNpcy4gQ2FsY3VsYXRlIHRoZSBydWxlIG9mIHRodW1iIEYgc3RhdGlzdGljLiBXaHkgaXMgaXQgZGlmZmVyZW50IGZyb20gdGhlIEYgc3RhdGlzdGljPwpgYGB7cn0KbW9kZWwzPC1sbShDQVNjaG9vbHMkbWF0aH50ZWFjaGVyX3N0dV9yYXRpbytDQVNjaG9vbHMkZXhwZW5kaXR1cmUpCm1vZGVsNDwtbG0oQ0FTY2hvb2xzJG1hdGh+dGVhY2hlcl9zdHVfcmF0aW8qMCtDQVNjaG9vbHMkZXhwZW5kaXR1cmUqMCkKcGFyKG1mcm93ID0gYygyLCAyKSkKcGxvdChtb2RlbDMpCmBgYAoKYGBge3J9CnBhcihtZnJvdyA9IGMoMiwgMikpCnBsb3QobW9kZWw0KQpgYGAKCgpgYGB7cn0Kc3NyX2RpZjwtIChzdW0oKHJlc2lkdWFscyhtb2RlbDQpKV4yKS1zdW0oKHJlc2lkdWFscyhtb2RlbDMpKV4yKSkgLyAyCnNzcl9kaWYKYGBgCgoKYGBge3J9CnNzcl9ub3JtPC0oc3VtKChyZXNpZHVhbHMobW9kZWwzKSleMikpCmRlbm9tIDwtICg0MjAtMi0xKQpzc3Jfbm9ybSAvIGRlbm9tCmBgYAoKYGBge3J9CnNzcl9kaWYvc3NyX25vcm0KYGBgCkNoZWNrOgpgYGB7cn0KcWYoLjk1LCBkZjEgPSA0MTcsMikKYGBgCkRpZmZlcmVuY2VzIHByb2JhYmx5IGJlY2F1c2Ugb2YgaG9tb3NrYWRhc3RpY2l0eSBpc3N1ZXMuCg==