This is a rule-based patient note analysis to capture patient goals of care (GOC) and advanced care planning (ACP) from text at the note level. We will utilize text phrases generated by clinicians who have annotated notes contained in the MIMIC-III Intensive Care Unit database to generate a Bag of Words (BoW) Model.
The BoW model does not utilize grammar or semantic relatedness, as it classifies text without regard to the spacial relation of words making up the text. The model utilizes only the presence or absence of words known to be associated with GOC or ACP (as per the clinicians who generated these rules during text classification).
This BoW model is employed as a means to compare a rule-based method to a deep-learning method which account for grammar, semantic relatedness, and named-entity recognition NeuroNER.
Note: Aggregated data are representative of actual MIMIC data, but to ensure and maintain patient privacy, all strings of characters here that appear to be patient note text are made up by myself as representative cases.
library("ggplot2")
library("reshape2")
library("data.table")
library("DescTools")
library("pscl")
library("PresenceAbsence")
load_data() will accept a label, lab, the set identifier (train/valid) set, and the map from file to row_id, mp. It will return the portion of the map particular to the set input as an argument.
load_data <- function(lab, set, mp){
#Read in data
tmp <- read.csv(paste("~/goals_of_care/regex_v2/",lab,"_",set,"_processed.csv", sep = ''),
header = T, stringsAsFactors = F, quote = "", row.names = NULL)
#Change "filename" to file for consistency
colnames(tmp)[which(colnames(tmp) == "filename")] <- "file"
#Subset unique filenames
tmp <- unique(tmp$file)
#Take substring of names to ensure we can map across both train_/valid_ files
tmp <- substr(tmp, nchar(tmp) - 9, nchar(tmp))
#Subset files in train set from key map
tmp <- mp[(mp$file %in% tmp),]
#Return the mapped data
return(tmp)
}
strict_regex() will accept all phrases kwds, and all note texts, texts, it will utilize grepl() to find direct matches in the text, and will return a list of booleans.
strict_regex <- function(kwds, texts){
#Create a list to store results
tmpList <- list()
#Loop through all keywords
for (i in 1:length(kwds)){
#Store results as a logical vector in its respective list entry position
tmpList[[i]] <- grepl(kwds[i], texts, ignore.case = TRUE)
}
#Return list and control to environment
return(tmpList)
}
to_df() will convert the list to a data.frame and apply the rule tokens as column names to indicate what each variable represents.
to_df <- function(domain, rule){
#Convert list from grepl to data frame
domain <- as.data.frame(domain)
#Show column names as phrases
colnames(domain) <- rule[rule != '']
#Multiply by 1 for binary numeric
domain <- domain*1
return(domain)
}
clean_text() accept a string of text, tokens, as well as a boolean, printout. It will remove carriage returns, remove text obfuscations, and convert the text to lowercase. If printout is TRUE, it will print out example text resulting from the removal of the above.
clean_text <- function(tokens, printout){
#Create a fake patient note phrase as a representative sample
ex_token <- "Example note:\nThe patient is a 81yo m who was found down in [** location **] on [** date **] by daughter, [** name **].\n Pt was in usual state of health until four days ago, when began to complain to family of heartburn for which the pt was taking tums in addition to his prescribed PPI, without resolution."
if (printout){
print(substr(ex_token, 1, 100))
}
#Remove carriage returns, convert to lower
tokens <- tolower(gsub('\r', ' ', tokens))
tokens <- tolower(gsub('\n', ' ', tokens))
ex_token <- tolower(gsub('\n', ' ', ex_token))
if (printout){
cat("Result after removing carriage returns:\n")
print(substr(ex_token, 1, 100))
}
#https://stackoverflow.com/questions/13529360/replace-text-within-parenthesis-in-r
#Remove obfuscations between '[' and ']'
tokens <- gsub(" *\\[.*?\\] *", ' ', tokens)
ex_token <- gsub(" *\\[.*?\\] *", ' ', ex_token)
if (printout){
cat("Result after leaving [obfuscation]:\n")
print(substr(ex_token, 1, 100))
}
#Keep only words & numeric
tokens <- gsub("[^[:alnum:][:space:]]", '', tokens)
ex_token <- gsub("[^[:alnum:][:space:]]", '', ex_token)
if (printout){
cat("Result after removing all but alphanumeric and spaces:\n")
print(substr(ex_token, 1, 100))
}
#Keep only a single white space
#https://stackoverflow.com/questions/25707647/merge-multiple-spaces-to-single-space-remove-trailing-leading-spaces
tokens <- gsub("(?<=[\\s])\\s*|^\\s+|\\s+$", '', tokens, perl=TRUE)
ex_token <- gsub("(?<=[\\s])\\s*|^\\s+|\\s+$", '', ex_token, perl=TRUE)
if (printout){
cat("Result after keeping only single spaces:\n")
print(substr(ex_token, 1, 100))
}
return(tokens)
}
bow() will accept a character vector, phrases, will split them on spaces, clean tokens of empty observations and return a character vector of tokens.
bow <- function(phrases){
tmp <- unlist(strsplit(phrases, ' '))
tmp <- tmp[tmp != '']
return(tmp)
}
plot_bow() will accept a character vector bows containing the bag of words, as well as a number, n, and a label lab,it will tabulate them and plot the top n-most represented words in a barplot, the title will contain the label information.
plot_bow <- function(bows, n, lab){
tmp_tab <- table(bows)[rev(order(table(bows)))]
par(mai=c(1,2,1,1))
barplot(rev(head(tmp_tab, n)), horiz = T, las = 1,
main = paste("Most Frequent Words in the ",lab ," Dictionary", sep = ''),
xlab = "Frequency")
}
bow_subset <- function(bows, n){
#Make an ordered table
tmp_tab <- table(bows)[rev(order(table(bows)))]
#print(head(tmp_tab))
#Percent calculation
perc <- length(tmp_tab)*(n/100)
#print(perc)
#Return top n represented values
return(attr(head(tmp_tab, perc), "names"))
}
cohort_gen() will accept the annotation data dat, train_set, and validation_set, and will map cohorts, returning the annotation data frame.
cohort_gen <- function(dat, train_set, valid_set){
dat$COHORT <- rep('', each = nrow(dat))
for (i in 1:nrow(dat)){
if (dat$ROW_ID[i] %in% train_set$row_id){
dat$COHORT[i] <- "train"
} else if (dat$ROW_ID[i] %in% valid_set$row_id){
dat$COHORT[i] <- "validation"
} else {
dat$COHORT[i] <- ""
}
}
return(dat)
}
standardize() will standardize numeric data.
standardize <- function(dat){
return((dat - mean(dat))/sd(dat))
}
check_variance <- function(dat){
##Remove columns if they have no variance
for (name in colnames(dat)){
if (all(dat[[name]] == 1) | all (dat[[name]] == 0)){
cat(paste("\"",name, "\" has no variance and will be dropped.\n", sep = ''))
dat[[name]] <- NULL
}
}
return(dat)
}
model_info <- function(fit){
#Summary info
model_sum <- summary(fit)
#Odds ratio, confidence interval
odds_ratio <- cbind(OR = exp(fit$coef), exp(confint(fit)))
#Create list for return
my_list <- list(model_sum, odds_ratio)
#names
names(my_list) <- c("Model Summary","OR Summary")
return(my_list)
}
confusion_data <- function(fit){
#Create variables
accuracy <- vector()
#Threshold sequence
threshold <- seq(0.1,0.9, by=.01)
for (i in 1:length(threshold)){
#Accuracy calculation from confusion matrix
accuracy[i] <- Conf(fit, cutoff = threshold[i])$acc
}
#Confusion matrix
cutoff <- threshold[which.max(accuracy)]
conf_mat <- Conf(fit, cutoff = cutoff)
cat("Maximum accuracy is acheived at a cutoff of: ", cutoff, '\n', sep = '')
#Plot
layout(matrix(1:2,ncol = 2))
plot(threshold, accuracy, type = "l", main = "Cutoff Based on Accuracy")
abline(h=max(accuracy), v = cutoff, col="red")
fourfoldplot(conf_mat$table, main = "Confusion Matrix Plot",
color = c("red","green"))
return(conf_mat)
}
roc_plot <- function(observed, fit, lab){
df <- data.frame(ID=1:length(observed),observed = observed,
predicted = predict(fit, type = "response"))
#Maximize PCC (percent correctly classified)
auc.roc.plot(df, opt.methods = 5, color = TRUE, main = paste(lab, "AUC ROC Plot", sep = ' '))
}
stat_gen <- function(dat, lab){
h_lab <- substr(lab, 1, 3)
#True Positives
tp <- 0
#True Negatives
tn <- 0
#False Positives
fp <- 0
#False Negatives
fn <- 0
for (i in 1:nrow(dat)){
#if both human and model mark positive
if (dat[[h_lab]][i] == 1 & dat[[lab]][i] == 1){
tp <- tp + 1
#if human marks negative and model assigns label
} else if (dat[[h_lab]][i] == 0 & dat[[lab]][i] == 1){
fp <- fp + 1
#if human marks positive and model marks negative
} else if (dat[[h_lab]][i] == 1 & dat[[lab]][i] == 0){
#false negative
fn <- fn + 1
} else if (dat[[h_lab]][i] == 0 & dat[[lab]][i] == 0){
tn <- tn + 1
}
}
tmpFrame <- cbind(tp, tn, fp, fn)
colnames(tmpFrame) <- c("tp", "tn", "fp", "fn")
return(as.data.frame(tmpFrame))
}
model_stats <- function(dat){
dat <- as.data.frame(dat)
accuracy <- (dat$tp + dat$tn)/(dat$tp + dat$tn + dat$fp + dat$fn)
precision <- dat$tp/(dat$tp + dat$fp)
sensitivity <- dat$tp/(dat$tp + dat$fn)
specificity <- dat$tn/(dat$tn+dat$fp)
F1 <- 2*(precision*sensitivity)/(precision + sensitivity)
dat$accuracy <- round(accuracy*100, 2)
dat$precision <- round(precision*100, 2)
dat$sensitivity <- round(sensitivity*100, 2)
dat$specificity <- round(specificity*100, 2)
dat$F1 <- round(F1*100, 2)
return(dat)
}
#Read csv
dat <- fread("~/goals_of_care/regex_v3/op_annotations_122017.csv",
header = T, stringsAsFactors = F)
#Remove note w/ missing data
missing_note <- fread("~/goals_of_care/unmatched_note_result.csv", header = T, stringsAsFactors = F)
nrow(missing_note)
## [1] 1
#Remove note with missing data
dat <- dat[!dat$ROW_ID %in% missing_note$ROW_ID, ]
#Make the names easier to deal with:
colnames(dat)[which(colnames(dat) == "Code Status Limitations")] <- "LIM"
colnames(dat)[which(colnames(dat) == "Full Code Status")] <- "COD"
colnames(dat)[which(colnames(dat) == "Patient and Family Care Preferences")] <- "CAR"
colnames(dat)[which(colnames(dat) == "Palliative Care Team Involvement")] <- "PAL"
colnames(dat)[which(colnames(dat) == "Communication with Family")] <- "FAM"
#Dat CIM is already accounted for
#Check the data
colnames(dat)
## [1] "V1"
## [2] "ROW_ID"
## [3] "SUBJECT_ID"
## [4] "HADM_ID"
## [5] "CATEGORY"
## [6] "DESCRIPTION"
## [7] "TEXT"
## [8] "COHORT"
## [9] "CAR"
## [10] "Patient and Family Care Preferences Text"
## [11] "FAM"
## [12] "Communication with Family Text"
## [13] "COD"
## [14] "Full Code Status Text"
## [15] "LIM"
## [16] "Code Status Limitations Text"
## [17] "PAL"
## [18] "Palliative Care Team Involvement Text"
## [19] "Ambiguous"
## [20] "Ambiguous Text"
## [21] "Ambiguous Comments"
## [22] "None"
## [23] "STAMP"
## [24] "operator"
## [25] "original_filename"
nrow(dat)
## [1] 1496
row_id_to_file_num.txt contains the key we will use to convert file as output from NeuroNER to row_id from MIMICIII.NOTEEVENTS, which was used as substrate to generate the annotated data set.
#Contains map of files (BRAT format for neuroNER) to row_id (MIMIC NOTEEVENTS)
map <- fread("~/goals_of_care/summary_stats/row_id_to_file_num.txt", header = F, stringsAsFactors = F, sep = '\t')
head(map)
## V1 V2
## 1: 407635 text_00000
## 2: 345097 text_00001
## 3: 371117 text_00002
## 4: 401545 text_00003
## 5: 393792 text_00004
## 6: 382263 text_00005
#Add column names for ease of merging
colnames(map) <- c("row_id", "file")
#Code Status Limitations
lim_train_set <- load_data("LIM", "train", map)
lim_valid_set <- load_data("LIM", "valid", map)
#Full Code
cod_train_set <- load_data("COD", "train", map)
cod_valid_set <- load_data("COD", "valid", map)
#Patient/Family Care Preferences
car_train_set <- load_data("CAR", "train", map)
car_valid_set <- load_data("CAR", "valid", map)
#Palliative Care Consult
pal_train_set <- load_data("PAL", "train", map)
pal_valid_set <- load_data("PAL", "valid", map)
#Family meeting held
fam_train_set <- load_data("FAM", "train", map)
fam_valid_set <- load_data("FAM", "valid", map)
#dat <- cohort_gen(dat, train_set, valid_set)
lim_dat <- cohort_gen(dat, lim_train_set, lim_valid_set)
cod_dat <- cohort_gen(dat, cod_train_set, cod_valid_set)
car_dat <- cohort_gen(dat, car_train_set, car_valid_set)
pal_dat <- cohort_gen(dat, pal_train_set, pal_valid_set)
fam_dat <- cohort_gen(dat, fam_train_set, fam_valid_set)
#apply train/valid cohort information to dat
if (identical(dat$ROW_ID, lim_dat$ROW_ID)){
dat$COHORT <- lim_dat$COHORT
}
levels(factor(dat$COHORT))
## [1] "train" "validation"
CIM will be defined as including code status limitations and documentation of care preferences.
#Create CIM dat by using any other data source
cim_dat <- lim_dat
cim <- vector()
for (i in 1:nrow(lim_dat)){
if (lim_dat$LIM[i] == 1 | lim_dat$CAR[i] == 1){
cim[length(cim)+1] <- 1
} else {
cim[length(cim)+1] <- 0
}
}
#Populate CIM data
cim_dat$CIM <- cim
#Add to dat
dat$CIM <- cim
Note: Only text and phrases from the training set will be used.
##Only use phrases from training set
lim_phrases <- lim_dat$`Code Status Limitations Text`[lim_dat$COHORT == "train"]
cod_phrases <- cod_dat$`Full Code Status Text`[cod_dat$COHORT == "train"]
car_phrases <- car_dat$`Patient and Family Care Preferences Text`[car_dat$COHORT == "train"]
pal_phrases <- pal_dat$`Palliative Care Team Involvement Text`[pal_dat$COHORT == "train"]
fam_phrases <- fam_dat$`Communication with Family Text`[fam_dat$COHORT == "train"]
##remove empty observations ""
lim_phrases <- lim_phrases[lim_phrases != '']
cod_phrases <- cod_phrases[cod_phrases != '']
car_phrases <- car_phrases[car_phrases != '']
pal_phrases <- pal_phrases[pal_phrases != '']
fam_phrases <- fam_phrases[fam_phrases != '']
#CIM is a combination of care preferences/code status limitations
cim_phrases <- c(car_phrases, lim_phrases)
##Remove duplicate observations (keep first)
dat <- dat[!duplicated(dat$TEXT), ]
#Subset texts from training set
txts <- clean_text(dat$TEXT[dat$COHORT == "train"], TRUE)
## [1] "Example note:\nThe patient is a 81yo m who was found down in [** location **] on [** date **] by daug"
## Result after removing carriage returns:
## [1] "example note: the patient is a 81yo m who was found down in [** location **] on [** date **] by daug"
## Result after leaving [obfuscation]:
## [1] "example note: the patient is a 81yo m who was found down in on by daughter, . pt was in usual sta"
## Result after removing all but alphanumeric and spaces:
## [1] "example note the patient is a 81yo m who was found down in on by daughter pt was in usual state "
## Result after keeping only single spaces:
## [1] "example note the patient is a 81yo m who was found down in on by daughter pt was in usual state of h"
lim_phrases <- clean_text(lim_phrases, FALSE)
cod_phrases <- clean_text(cod_phrases, FALSE)
car_phrases <- clean_text(car_phrases, FALSE)
pal_phrases <- clean_text(pal_phrases, FALSE)
fam_phrases <- clean_text(fam_phrases, FALSE)
#
cim_phrases <- clean_text(cim_phrases, FALSE)
#Create bag of words by splitting phrases on spaces and unlisting result
lim_bow <- bow(lim_phrases)
cod_bow <- bow(cod_phrases)
car_bow <- bow(car_phrases)
pal_bow <- bow(pal_phrases)
fam_bow <- bow(fam_phrases)
#cim
cim_bow <- bow(cim_phrases)
#All texts
txt_bow <- bow(txts)
plot_bow(lim_bow, 20, "LIM Phrase")
plot_bow(cod_bow, 20, "COD Phrase")
plot_bow(car_bow, 20, "CAR Phrase")
plot_bow(pal_bow, 20, "PAL Phrase")
plot_bow(fam_bow, 20, "FAM Phrase")
plot_bow(cim_bow, 20, "CIM Phrase")
plot_bow(txt_bow, 20, "Corpus")
#Top non-specific tokens from all texts
txt_bow <- bow_subset(txt_bow, .1)
#Clean non-specific tokens from phrase dictionaries
lim_bow <- lim_bow[!lim_bow %in% txt_bow]
cod_bow <- cod_bow[!cod_bow %in% txt_bow]
car_bow <- car_bow[!car_bow %in% txt_bow]
pal_bow <- pal_bow[!pal_bow %in% txt_bow]
fam_bow <- fam_bow[!fam_bow %in% txt_bow]
cim_bow <- cim_bow[!cim_bow %in% txt_bow]
#Subset top tokens in each phrase dictionary
(lim_bow <- bow_subset(lim_bow, 10))
## [1] "code" "status" "dnr" "dni"
## [5] "dnrdni" "full" "do" "resuscitate"
## [9] "family" "patient" "cmo" "confirmed"
## [13] "comfort" "care" "only" "but"
## [17] "measures" "made" "be" "her"
## [21] "would" "now" "that" "intubate"
## [25] "hcp" "compressions" "changed" "want"
## [29] "pressors" "if" "his" "a"
## [33] "will" "pt" "per" "patients"
(cod_bow <- bow_subset(cod_bow, 10))
## [1] "code" "full" "status" "presumed" "confirmed"
## [6] "discussed" "patient" "family" "will" "wife"
## [11] "per" "hcp" "discussion"
(car_bow <- bow_subset(car_bow, 10))
## [1] "family" "care" "code" "patient" "would"
## [6] "be" "full" "status" "comfort" "that"
## [11] "cmo" "want" "like" "her" "goals"
## [16] "but" "his" "will" "measures" "dnrdni"
## [21] "she" "confirmed" "meeting" "discussion" "made"
## [26] "dnr" "decision" "he" "focus" "a"
## [31] "they" "son" "or" "daughter" "central"
## [36] "procedures" "patients" "discussed" "aggressive" "pt"
## [41] "pressors" "per" "invasive" "now" "this"
## [46] "after" "including" "hcp" "escalation" "wife"
## [51] "lines" "home" "by" "wishes" "we"
## [56] "states" "prognosis" "plan" "only" "dni"
## [61] "any" "morphine" "avoid" "are" "agreed"
## [66] "yesterday" "pts" "intubation" "have"
(pal_bow <- bow_subset(pal_bow, 10))
## [1] "care" "palliative" "family" "goals" "consult"
## [6] "would" "like" "patient" "hospice" "her"
(fam_bow <- bow_subset(fam_bow, 10))
## [1] "family" "meeting" "code" "patient"
## [5] "care" "discussed" "communication" "held"
## [9] "full" "status" "will" "wife"
## [13] "her" "son" "goals" "discussion"
## [17] "be" "a" "daughter" "confirmed"
## [21] "hcp" "would" "his" "dnrdni"
## [25] "this" "that" "comfort" "patients"
## [29] "husband" "consent" "who" "s"
## [33] "we" "spoke" "have" "plan"
## [37] "icu" "yesterday" "today" "they"
## [41] "met" "comments" "after" "signed"
## [45] "him" "decision" "but" "team"
## [49] "prognosis" "like" "he" "are"
## [53] "w" "pts" "pt" "dnr"
## [57] "discuss" "update" "rounds" "length"
## [61] "aware" "night"
(cim_bow <- bow_subset(cim_bow, 10))
## [1] "code" "status" "dnr" "family"
## [5] "dni" "full" "care" "patient"
## [9] "dnrdni" "would" "cmo" "comfort"
## [13] "be" "do" "that" "confirmed"
## [17] "but" "want" "resuscitate" "her"
## [21] "measures" "made" "goals" "like"
## [25] "his" "only" "will" "meeting"
## [29] "discussion" "a" "she" "now"
## [33] "he" "pressors" "patients" "decision"
## [37] "daughter" "central" "son" "pt"
## [41] "per" "hcp" "focus" "invasive"
## [45] "discussed" "procedures" "aggressive" "they"
## [49] "or" "escalation" "after" "wife"
## [53] "this" "by" "plan" "intubation"
## [57] "compressions" "we" "lines" "including"
## [61] "changed" "wishes" "prognosis" "if"
## [65] "home" "given" "chest" "states"
## [69] "make" "have" "any" "agreed"
## [73] "should" "morphine"
#Strict regex
lim_tmp <- strict_regex(lim_bow, txts)
cod_tmp <- strict_regex(cod_bow, txts)
car_tmp <- strict_regex(car_bow, txts)
pal_tmp <- strict_regex(pal_bow, txts)
fam_tmp <- strict_regex(fam_bow, txts)
#CIM
cim_tmp <- strict_regex(cim_bow, txts)
#Convert list to data.frame
lim_tmp <- to_df(lim_tmp, lim_bow)
cod_tmp <- to_df(cod_tmp, cod_bow)
car_tmp <- to_df(car_tmp, car_bow)
pal_tmp <- to_df(pal_tmp, pal_bow)
fam_tmp <- to_df(fam_tmp, fam_bow)
#CIM
cim_tmp <- to_df(cim_tmp, cim_bow)
#Check variance
print("Check LIM Variances:")
## [1] "Check LIM Variances:"
lim_tmp <- check_variance(lim_tmp)
## "a" has no variance and will be dropped.
print("Check COD Variances:")
## [1] "Check COD Variances:"
cod_tmp <- check_variance(cod_tmp)
print("Check CAR Variances:")
## [1] "Check CAR Variances:"
car_tmp <- check_variance(car_tmp)
## "he" has no variance and will be dropped.
## "a" has no variance and will be dropped.
## "or" has no variance and will be dropped.
print("Check PAL Variances:")
## [1] "Check PAL Variances:"
pal_tmp <- check_variance(pal_tmp)
print("Check FAM Variances:")
## [1] "Check FAM Variances:"
fam_tmp <- check_variance(fam_tmp)
## "a" has no variance and will be dropped.
## "s" has no variance and will be dropped.
## "he" has no variance and will be dropped.
## "w" has no variance and will be dropped.
print("Check CIM Variances:")
## [1] "Check CIM Variances:"
cim_tmp <- check_variance(cim_tmp)
## "a" has no variance and will be dropped.
## "he" has no variance and will be dropped.
## "or" has no variance and will be dropped.
#cbind data
LIM <- dat$LIM[dat$COHORT == "train"]
lim_tmp <- cbind(LIM, lim_tmp)
#Note: NA's must be omitted for COD due to missing observations
COD <- dat$COD[dat$COHORT == "train"]
cod_tmp <- na.omit(cbind(COD, cod_tmp))
CAR <- dat$CAR[dat$COHORT == "train"]
car_tmp <- cbind(CAR, car_tmp)
PAL <- dat$PAL[dat$COHORT == "train"]
pal_tmp <- cbind(PAL, pal_tmp)
FAM <- dat$FAM[dat$COHORT == "train"]
fam_tmp <- cbind(FAM, fam_tmp)
CIM <- dat$CIM[dat$COHORT == "train"]
cim_tmp <- cbind(CIM, cim_tmp)
#LIM
lim_reg <- glm(LIM ~ ., family = binomial(link = 'logit'), data = lim_tmp)
#COD
cod_reg <- glm(COD ~ ., family = binomial(link = 'logit'), data = cod_tmp)
#CAR
car_reg <- glm(CAR ~ ., family = binomial(link = 'logit'), data = car_tmp)
#PAL
pal_reg <- glm(PAL ~ ., family = binomial(link = 'logit'), data = pal_tmp)
#FAM
fam_reg <- glm(FAM ~ ., family = binomial(link = 'logit'), data = fam_tmp)
#CIM
cim_reg <- glm(CIM ~ ., family = binomial(link = 'logit'), data = cim_tmp)
model_info(lim_reg)
## Waiting for profiling to be done...
## $`Model Summary`
##
## Call:
## glm(formula = LIM ~ ., family = binomial(link = "logit"), data = lim_tmp)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6820 -0.6086 -0.4439 0.4427 2.5766
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.490e+01 8.192e+02 -0.018 0.98549
## code 1.276e+00 9.185e-01 1.389 0.16478
## status 1.311e-01 9.426e-01 0.139 0.88939
## dnr 3.159e+00 5.353e-01 5.901 3.61e-09 ***
## dni 2.778e-01 4.262e-01 0.652 0.51447
## dnrdni -6.399e-01 6.631e-01 -0.965 0.33451
## full -8.391e-01 4.462e-01 -1.881 0.06004 .
## do 1.325e+00 1.190e+03 0.001 0.99911
## resuscitate 3.853e-01 5.464e-01 0.705 0.48073
## family 5.374e-01 6.171e-01 0.871 0.38385
## patient 2.529e-01 5.062e-01 0.500 0.61737
## cmo -7.769e-01 5.743e-01 -1.353 0.17613
## confirmed -6.803e-02 4.528e-01 -0.150 0.88057
## comfort -8.872e-03 3.841e-01 -0.023 0.98157
## care 1.567e+00 1.011e+00 1.550 0.12106
## only 5.423e-01 3.641e-01 1.489 0.13640
## but -1.148e-01 3.865e-01 -0.297 0.76647
## measures 8.065e-01 7.721e-01 1.045 0.29623
## made 8.609e-01 5.484e-01 1.570 0.11651
## be -3.061e+00 2.626e+00 -1.166 0.24376
## her 1.462e+01 8.628e+02 0.017 0.98648
## would 9.032e-02 3.258e-01 0.277 0.78157
## now -2.072e-01 4.667e-01 -0.444 0.65710
## that -2.491e-02 3.135e-01 -0.079 0.93666
## intubate -8.089e-01 2.980e-01 -2.715 0.00663 **
## hcp -3.157e-01 4.256e-01 -0.742 0.45822
## compressions 1.563e+00 8.943e-01 1.748 0.08044 .
## changed -4.105e-02 3.404e-01 -0.121 0.90403
## want -1.906e-01 4.718e-01 -0.404 0.68621
## pressors 1.358e-01 3.313e-01 0.410 0.68187
## `if` 8.016e-01 5.529e-01 1.450 0.14713
## his -5.420e-02 6.612e-01 -0.082 0.93467
## will 8.687e-02 3.436e-01 0.253 0.80039
## pt -1.046e+00 8.427e-01 -1.241 0.21450
## per -1.401e+00 1.027e+00 -1.365 0.17241
## patients -4.012e-01 4.277e-01 -0.938 0.34815
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 608.78 on 447 degrees of freedom
## Residual deviance: 366.60 on 412 degrees of freedom
## AIC: 438.6
##
## Number of Fisher Scoring iterations: 14
##
##
## $`OR Summary`
## OR 2.5 % 97.5 %
## (Intercept) 3.390758e-07 NA 7.744298e+48
## code 3.582003e+00 5.757349e-01 2.234698e+01
## status 1.140072e+00 2.013795e-01 8.935358e+00
## dnr 2.353982e+01 8.684025e+00 7.198795e+01
## dni 1.320245e+00 5.593838e-01 3.003546e+00
## dnrdni 5.273281e-01 1.395719e-01 1.500222e+00
## full 4.320786e-01 1.795068e-01 1.044885e+00
## do 3.761014e+00 3.194168e-06 5.534231e+06
## resuscitate 1.470077e+00 4.935604e-01 4.278536e+00
## family 1.711550e+00 5.307354e-01 6.046266e+00
## patient 1.287712e+00 4.948531e-01 3.644624e+00
## cmo 4.598160e-01 1.465789e-01 1.410505e+00
## confirmed 9.342276e-01 3.758651e-01 2.232875e+00
## comfort 9.911671e-01 4.590274e-01 2.080963e+00
## care 4.793846e+00 7.638770e-01 3.947607e+01
## only 1.719968e+00 8.368912e-01 3.505366e+00
## but 8.915502e-01 4.191380e-01 1.916412e+00
## measures 2.240042e+00 5.272346e-01 1.097907e+01
## made 2.365174e+00 9.871794e-01 6.997559e+00
## be 4.684687e-02 2.832721e-04 5.904301e+00
## her 2.226937e+06 5.824145e-52 NA
## would 1.094526e+00 5.742072e-01 2.067283e+00
## now 8.128751e-01 3.312706e-01 1.714930e+00
## that 9.753968e-01 5.250381e-01 1.801435e+00
## intubate 4.453258e-01 2.468890e-01 7.967078e-01
## hcp 7.293000e-01 3.108680e-01 1.660108e+00
## compressions 4.775233e+00 8.518711e-01 3.098439e+01
## changed 9.597830e-01 1.574832e+00 1.642154e+00
## want 8.264527e-01 3.906924e-01 2.066883e+00
## pressors 1.145453e+00 5.933739e-01 2.185284e+00
## `if` 2.229147e+00 7.914195e-01 7.022790e+00
## his 9.472438e-01 2.641518e-01 3.596028e+00
## will 1.090757e+00 5.581471e-01 1.882032e+00
## pt 3.513316e-01 6.731749e-02 1.899641e+00
## per 2.463941e-01 3.164475e-02 1.938602e+00
## patients 6.694846e-01 3.377275e-01 1.527315e+00
confusion_data(lim_reg)
## Maximum accuracy is acheived at a cutoff of: 0.63
##
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 249 59
## 1 12 128
##
## Accuracy : 0.8415
## 95% CI : (0.8048, 0.8724)
## No Information Rate : 0.5826
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.6621
## Mcnemar's Test P-Value : 4.78e-08
##
## Sensitivity : 0.9540
## Specificity : 0.6845
## Pos Pred Value : 0.8084
## Neg Pred Value : 0.9143
## Prevalence : 0.5826
## Detection Rate : 0.5558
## Detection Prevalence : 0.5826
## Balanced Accuracy : 0.8193
## F-val Accuracy : 0.8752
##
## 'Positive' Class : 0
model_info(cod_reg)
## Waiting for profiling to be done...
## $`Model Summary`
##
## Call:
## glm(formula = COD ~ ., family = binomial(link = "logit"), data = cod_tmp)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6589 0.0000 0.2433 0.4909 1.8371
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -17.9327 3452.6878 -0.005 0.9959
## code 18.4886 1345.1052 0.014 0.9890
## full 34.6984 1901.7232 0.018 0.9854
## status -15.3803 1345.1044 -0.011 0.9909
## presumed 1.5582 0.9206 1.693 0.0905 .
## confirmed -0.6856 0.5381 -1.274 0.2027
## discussed 1.0640 0.6260 1.700 0.0892 .
## patient -0.5915 0.8222 -0.719 0.4719
## family -0.3863 1.0101 -0.382 0.7021
## will -0.7086 0.6458 -1.097 0.2725
## wife -0.1738 0.5893 -0.295 0.7680
## per -16.1324 3500.0097 -0.005 0.9963
## hcp -0.4296 0.5915 -0.726 0.4676
## discussion -2.4229 0.5433 -4.460 8.21e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 466.19 on 355 degrees of freedom
## Residual deviance: 150.88 on 342 degrees of freedom
## AIC: 178.88
##
## Number of Fisher Scoring iterations: 19
##
##
## $`OR Summary`
## OR 2.5 % 97.5 %
## (Intercept) 1.628993e-08 7.287626e-37 1.788560e+21
## code 1.070332e+08 4.634765e-17 5.998036e+203
## full 1.173020e+15 Inf 1.500898e+223
## status 2.091309e-07 4.626247e-177 2.780290e+22
## presumed 4.750226e+00 9.766722e-01 4.002518e+01
## confirmed 5.038019e-01 1.802375e-01 1.520284e+00
## discussed 2.897814e+00 9.365957e-01 1.145960e+01
## patient 5.534749e-01 7.750053e-02 2.289641e+00
## family 6.795678e-01 6.178491e-02 3.903444e+00
## will 4.923112e-01 1.194863e-01 1.579889e+00
## wife 8.404230e-01 2.794852e-01 2.929783e+00
## per 9.858233e-08 1.221274e-40 3.136681e+26
## hcp 6.507705e-01 2.132282e-01 2.223450e+00
## discussion 8.866770e-02 2.942014e-02 2.538987e-01
confusion_data(cod_reg)
## Maximum accuracy is acheived at a cutoff of: 0.59
##
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 109 5
## 1 20 222
##
## Accuracy : 0.9298
## 95% CI : (0.8984, 0.9520)
## No Information Rate : 0.6376
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.8441
## Mcnemar's Test P-Value : 0.00511
##
## Sensitivity : 0.8450
## Specificity : 0.9780
## Pos Pred Value : 0.9561
## Neg Pred Value : 0.9174
## Prevalence : 0.3624
## Detection Rate : 0.3062
## Detection Prevalence : 0.3624
## Balanced Accuracy : 0.9115
## F-val Accuracy : 0.8971
##
## 'Positive' Class : 0
model_info(car_reg)
## Waiting for profiling to be done...
## $`Model Summary`
##
## Call:
## glm(formula = CAR ~ ., family = binomial(link = "logit"), data = car_tmp)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.94229 -0.49402 -0.22153 -0.00041 2.80976
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -22.39207 1096.89433 -0.020 0.98371
## family 0.42734 0.92210 0.463 0.64304
## care 3.33315 1.94490 1.714 0.08657 .
## code -3.22045 1.69927 -1.895 0.05807 .
## patient 1.31230 0.74600 1.759 0.07856 .
## would 0.53032 0.40065 1.324 0.18562
## be 19.86085 1096.88974 0.018 0.98555
## full -0.02800 0.55634 -0.050 0.95987
## status -5.18044 1.61929 -3.199 0.00138 **
## comfort 0.63346 0.43821 1.446 0.14830
## that -0.81566 0.42542 -1.917 0.05520 .
## cmo 1.77017 0.64738 2.734 0.00625 **
## want 0.07593 0.59741 0.127 0.89887
## like 0.24036 0.52937 0.454 0.64980
## her -3.01157 3.06162 -0.984 0.32529
## goals 0.64383 0.48670 1.323 0.18588
## but -0.62694 0.51756 -1.211 0.22577
## his 1.40015 1.12360 1.246 0.21272
## will 0.95920 0.53080 1.807 0.07075 .
## measures 1.55816 0.88418 1.762 0.07803 .
## dnrdni 0.44425 0.67879 0.654 0.51281
## she 5.77221 1.81844 3.174 0.00150 **
## confirmed 0.82167 0.47162 1.742 0.08147 .
## meeting 0.44702 0.44164 1.012 0.31145
## discussion 0.87539 0.54751 1.599 0.10985
## made -1.58002 0.77212 -2.046 0.04072 *
## dnr 1.01248 0.64605 1.567 0.11707
## decision 0.23256 0.69613 0.334 0.73832
## focus -0.06517 0.91600 -0.071 0.94328
## they 1.02305 0.74824 1.367 0.17154
## son -0.25389 0.41300 -0.615 0.53873
## daughter 0.61733 0.47931 1.288 0.19776
## central 0.28043 0.52106 0.538 0.59045
## procedures 1.29927 0.88998 1.460 0.14432
## patients 0.86881 0.50045 1.736 0.08255 .
## discussed -0.19037 0.48195 -0.395 0.69285
## aggressive 1.26548 0.48692 2.599 0.00935 **
## pt -0.94304 1.00650 -0.937 0.34878
## pressors -0.49708 0.45344 -1.096 0.27297
## per -1.46686 1.49294 -0.983 0.32584
## invasive 0.36829 0.43641 0.844 0.39872
## now -0.85329 0.65002 -1.313 0.18928
## this 0.31908 0.46122 0.692 0.48905
## after 0.76695 0.38993 1.967 0.04920 *
## including -0.82800 0.41728 -1.984 0.04723 *
## hcp 0.29299 0.50172 0.584 0.55923
## escalation 3.11542 1.33654 2.331 0.01976 *
## wife 1.31499 0.51572 2.550 0.01078 *
## lines 1.43020 1.01493 1.409 0.15879
## home -0.50978 0.40211 -1.268 0.20489
## by -0.78443 0.40366 -1.943 0.05198 .
## wishes 1.81498 1.20817 1.502 0.13303
## we 0.18450 0.84326 0.219 0.82681
## states 0.98044 0.94565 1.037 0.29983
## prognosis 0.91899 0.55216 1.664 0.09604 .
## plan 0.83213 2.73841 0.304 0.76122
## only -0.54291 0.50388 -1.077 0.28127
## dni -0.55042 0.60935 -0.903 0.36637
## any 0.20009 0.38154 0.524 0.59999
## morphine 0.94329 0.40767 2.314 0.02067 *
## avoid -0.55810 0.53304 -1.047 0.29509
## are -0.90538 2.93637 -0.308 0.75783
## agreed 3.02283 1.57815 1.915 0.05544 .
## yesterday -0.47403 0.42862 -1.106 0.26875
## pts 0.34627 0.58808 0.589 0.55599
## intubation 0.82780 0.42863 1.931 0.05345 .
## have -0.23816 0.38742 -0.615 0.53874
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 501.64 on 447 degrees of freedom
## Residual deviance: 265.89 on 381 degrees of freedom
## AIC: 399.89
##
## Number of Fisher Scoring iterations: 15
##
##
## $`OR Summary`
## OR 2.5 % 97.5 %
## (Intercept) 1.884715e-10 2.733766e-182 8.227312e+07
## family 1.533181e+00 2.872708e-01 1.187854e+01
## care 2.802659e+01 1.146395e+00 2.810263e+03
## code 3.993721e-02 6.768861e-04 7.557627e-01
## patient 3.714699e+00 9.338393e-01 1.786655e+01
## would 1.699469e+00 7.717643e-01 3.742223e+00
## be 4.221414e+08 1.584563e-42 NA
## full 9.723928e-01 3.271114e-01 2.929014e+00
## status 5.625505e-03 1.900293e-04 1.103152e-01
## comfort 1.884118e+00 7.894000e-01 4.440380e+00
## that 4.423464e-01 1.884954e-01 1.007339e+00
## cmo 5.871864e+00 1.669936e+00 2.148728e+01
## want 1.078883e+00 3.274490e-01 3.444219e+00
## like 1.271706e+00 4.596239e-01 3.705851e+00
## her 4.921451e-02 3.537771e-05 1.351322e+01
## goals 1.903765e+00 7.236902e-01 4.932499e+00
## but 5.342266e-01 1.923257e-01 1.481087e+00
## his 4.055817e+00 5.043043e-01 4.373709e+01
## will 2.609616e+00 9.534956e-01 7.722475e+00
## measures 4.750082e+00 8.853171e-01 2.925056e+01
## dnrdni 1.559315e+00 4.143922e-01 6.019716e+00
## she 3.212458e+02 1.031149e+01 1.622461e+04
## confirmed 2.274290e+00 8.953247e-01 5.747602e+00
## meeting 1.563645e+00 6.499789e-01 3.711084e+00
## discussion 2.399810e+00 8.120149e-01 7.016203e+00
## made 2.059709e-01 4.222284e-02 8.809848e-01
## dnr 2.752421e+00 7.660604e-01 9.805700e+00
## decision 1.261827e+00 3.087643e-01 4.827918e+00
## focus 9.369052e-01 1.492931e-01 5.645147e+00
## they 2.781676e+00 6.176387e-01 1.193126e+01
## son 7.757793e-01 3.402924e-01 1.730437e+00
## daughter 1.853970e+00 7.197334e-01 4.758819e+00
## central 1.323694e+00 4.660552e-01 3.638201e+00
## procedures 3.666612e+00 6.535049e-01 2.201928e+01
## patients 2.384077e+00 8.910112e-01 6.415325e+00
## discussed 8.266563e-01 3.154346e-01 2.104103e+00
## aggressive 3.544788e+00 1.361483e+00 9.290068e+00
## pt 3.894437e-01 5.809819e-02 3.176486e+00
## pressors 6.083049e-01 2.410216e-01 1.442619e+00
## per 2.306477e-01 1.404212e-02 5.506153e+00
## invasive 1.445260e+00 6.054986e-01 3.384842e+00
## now 4.260110e-01 1.223449e-01 1.613143e+00
## this 1.375863e+00 5.643252e-01 3.477374e+00
## after 2.153191e+00 1.011930e+00 4.704100e+00
## including 4.369241e-01 1.882151e-01 9.740241e-01
## hcp 1.340433e+00 4.971407e-01 3.589305e+00
## escalation 2.254290e+01 1.850248e+00 3.971859e+02
## wife 3.724726e+00 1.357923e+00 1.038859e+01
## lines 4.179534e+00 6.264030e-01 3.376135e+01
## home 6.006275e-01 2.679594e-01 1.306164e+00
## by 4.563815e-01 2.027632e-01 9.949029e-01
## wishes 6.140929e+00 6.436091e-01 7.954753e+01
## we 1.202615e+00 2.441825e-01 6.889857e+00
## states 2.665632e+00 3.841483e-01 1.616689e+01
## prognosis 2.506757e+00 8.431607e-01 7.452076e+00
## plan 2.298213e+00 2.878130e-03 3.446716e+02
## only 5.810555e-01 2.063825e-01 1.507808e+00
## dni 5.767057e-01 1.647850e-01 1.825411e+00
## any 1.221508e+00 5.780078e-01 2.599158e+00
## morphine 2.568410e+00 1.149604e+00 5.730888e+00
## avoid 5.722969e-01 1.924311e-01 1.575519e+00
## are 4.043884e-01 1.338146e-03 1.878436e+02
## agreed 2.054943e+01 1.078347e+00 7.014697e+02
## yesterday 6.224905e-01 2.614204e-01 1.417158e+00
## pts 1.413778e+00 4.336287e-01 4.414384e+00
## intubation 2.288282e+00 9.963440e-01 5.398698e+00
## have 7.880789e-01 3.659929e-01 1.684207e+00
confusion_data(car_reg)
## Maximum accuracy is acheived at a cutoff of: 0.48
##
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 319 39
## 1 18 72
##
## Accuracy : 0.8728
## 95% CI : (0.8387, 0.9005)
## No Information Rate : 0.7522
## P-Value [Acc > NIR] : 1.82e-10
##
## Kappa : 0.6356
## Mcnemar's Test P-Value : 0.008071
##
## Sensitivity : 0.9466
## Specificity : 0.6486
## Pos Pred Value : 0.8911
## Neg Pred Value : 0.8000
## Prevalence : 0.7522
## Detection Rate : 0.7121
## Detection Prevalence : 0.7522
## Balanced Accuracy : 0.7976
## F-val Accuracy : 0.9180
##
## 'Positive' Class : 0
model_info(pal_reg)
## Waiting for profiling to be done...
## $`Model Summary`
##
## Call:
## glm(formula = PAL ~ ., family = binomial(link = "logit"), data = pal_tmp)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.30799 -0.00002 -0.00001 -0.00001 2.10994
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.150e+01 2.412e+04 -0.001 0.999
## care 8.641e-02 1.132e+04 0.000 1.000
## palliative 2.243e+01 2.203e+03 0.010 0.992
## family 5.378e-01 6.470e+03 0.000 1.000
## goals -2.038e+00 1.717e+00 -1.187 0.235
## consult -6.160e-01 9.477e-01 -0.650 0.516
## would 2.167e+00 1.381e+00 1.569 0.117
## like -9.113e-01 1.538e+00 -0.593 0.553
## patient -3.842e+00 2.715e+00 -1.415 0.157
## hospice 2.285e+00 1.588e+00 1.439 0.150
## her 7.931e-01 2.042e+04 0.000 1.000
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 88.154 on 447 degrees of freedom
## Residual deviance: 32.719 on 437 degrees of freedom
## AIC: 54.719
##
## Number of Fisher Scoring iterations: 21
##
##
## $`OR Summary`
## OR 2.5 % 97.5 %
## (Intercept) 4.610190e-10 0.000000e+00 Inf
## care 1.090249e+00 1.128223e-194 1.053554e+194
## palliative 5.492412e+09 1.447931e-26 1.018147e+44
## family 1.712303e+00 1.581603e-107 5.734711e+108
## goals 1.302341e-01 2.131164e-03 2.265094e+00
## consult 5.400928e-01 7.645694e-02 3.460647e+00
## would 8.734935e+00 8.730233e-01 2.870073e+02
## like 4.019869e-01 1.326125e-02 1.197775e+01
## patient 2.144893e-02 2.991976e-05 2.892339e+00
## hospice 9.821736e+00 6.024142e-01 4.451343e+02
## her 2.210308e+00 0.000000e+00 Inf
confusion_data(pal_reg)
## Maximum accuracy is acheived at a cutoff of: 0.47
##
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 438 6
## 1 1 3
##
## Accuracy : 0.9844
## 95% CI : (0.9681, 0.9924)
## No Information Rate : 0.9799
## P-Value [Acc > NIR] : 0.3215
##
## Kappa : 0.4548
## Mcnemar's Test P-Value : 0.1306
##
## Sensitivity : 0.9977
## Specificity : 0.3333
## Pos Pred Value : 0.9865
## Neg Pred Value : 0.7500
## Prevalence : 0.9799
## Detection Rate : 0.9777
## Detection Prevalence : 0.9799
## Balanced Accuracy : 0.6655
## F-val Accuracy : 0.9921
##
## 'Positive' Class : 0
model_info(fam_reg)
## Waiting for profiling to be done...
## $`Model Summary`
##
## Call:
## glm(formula = FAM ~ ., family = binomial(link = "logit"), data = fam_tmp)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4114 -0.5834 -0.2959 0.4047 2.7483
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.528e+00 2.292e+03 -0.001 0.99947
## family 2.259e-01 7.286e-01 0.310 0.75650
## meeting 2.005e+00 3.948e-01 5.079 3.8e-07 ***
## code -1.313e-01 9.706e-01 -0.135 0.89237
## patient 6.589e-01 5.783e-01 1.139 0.25451
## care -1.147e+00 1.044e+00 -1.098 0.27230
## discussed 8.388e-01 5.502e-01 1.524 0.12741
## communication 1.232e-01 8.525e-01 0.145 0.88508
## held 1.207e+00 4.188e-01 2.882 0.00395 **
## full -4.428e-01 4.480e-01 -0.988 0.32293
## status -1.142e+00 1.011e+00 -1.129 0.25899
## will 2.427e-01 3.780e-01 0.642 0.52081
## wife 2.006e-01 4.343e-01 0.462 0.64420
## her 2.642e-01 2.107e+03 0.000 0.99990
## son 6.628e-02 3.311e-01 0.200 0.84133
## goals -3.720e-01 4.427e-01 -0.840 0.40081
## discussion 8.260e-01 5.590e-01 1.478 0.13951
## be -1.208e+00 2.351e+00 -0.514 0.60717
## daughter -5.260e-02 3.914e-01 -0.134 0.89310
## confirmed 1.140e+00 4.193e-01 2.720 0.00653 **
## hcp -2.785e-02 4.216e-01 -0.066 0.94733
## would -8.181e-03 3.396e-01 -0.024 0.98078
## his 4.585e-01 8.347e-01 0.549 0.58284
## dnrdni 2.004e-01 4.954e-01 0.404 0.68589
## this 1.716e-01 3.970e-01 0.432 0.66553
## that -3.124e-01 3.543e-01 -0.882 0.37791
## comfort 3.495e-01 3.668e-01 0.953 0.34067
## patients -8.660e-01 4.751e-01 -1.823 0.06832 .
## husband 3.447e-01 6.084e-01 0.567 0.57096
## consent -3.717e-01 6.609e-01 -0.562 0.57379
## who 5.909e-01 3.340e-01 1.769 0.07684 .
## we 7.503e-01 8.739e-01 0.859 0.39057
## spoke 8.619e-01 7.332e-01 1.176 0.23976
## have 1.529e-01 3.270e-01 0.468 0.64004
## plan 1.644e+01 1.558e+03 0.011 0.99158
## icu -1.646e+01 2.696e+03 -0.006 0.99513
## yesterday 6.468e-01 3.572e-01 1.811 0.07017 .
## today 5.103e-02 3.249e-01 0.157 0.87521
## they 4.938e-01 5.611e-01 0.880 0.37883
## met -1.732e-01 3.807e-01 -0.455 0.64915
## comments -3.321e-01 6.613e-01 -0.502 0.61553
## after 7.473e-04 3.162e-01 0.002 0.99811
## signed 7.179e-01 6.911e-01 1.039 0.29894
## him 1.011e+00 5.391e-01 1.875 0.06076 .
## decision 9.344e-02 5.350e-01 0.175 0.86135
## but -1.587e-01 4.569e-01 -0.347 0.72833
## team 6.697e-01 4.005e-01 1.672 0.09444 .
## prognosis 1.845e-01 4.519e-01 0.408 0.68300
## like -4.601e-01 4.413e-01 -1.043 0.29713
## are 1.719e+00 2.147e+00 0.801 0.42326
## pts -2.622e-01 5.522e-01 -0.475 0.63486
## pt -1.425e+00 8.371e-01 -1.703 0.08862 .
## dnr 5.035e-01 4.989e-01 1.009 0.31282
## discuss 5.093e-01 4.924e-01 1.034 0.30101
## update 2.697e+00 1.058e+00 2.548 0.01083 *
## rounds -9.847e-01 5.992e-01 -1.643 0.10032
## length 4.212e-01 1.129e+00 0.373 0.70900
## aware 2.201e-01 5.193e-01 0.424 0.67169
## night 4.073e-01 3.068e-01 1.327 0.18437
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 551.67 on 447 degrees of freedom
## Residual deviance: 339.75 on 389 degrees of freedom
## AIC: 457.75
##
## Number of Fisher Scoring iterations: 15
##
##
## $`OR Summary`
## OR 2.5 % 97.5 %
## (Intercept) 2.170565e-01 3.223067e-138 1.200239e+216
## family 1.253477e+00 3.275840e-01 5.994485e+00
## meeting 7.426795e+00 3.466137e+00 1.639470e+01
## code 8.769234e-01 1.342624e-01 6.195737e+00
## patient 1.932680e+00 6.500384e-01 6.380657e+00
## care 3.177319e-01 3.754745e-02 2.410075e+00
## discussed 2.313548e+00 7.986981e-01 6.970199e+00
## communication 1.131126e+00 2.180393e-01 6.378723e+00
## held 3.343269e+00 1.469974e+00 7.644269e+00
## full 6.422098e-01 2.663211e-01 1.551079e+00
## status 3.193316e-01 4.428823e-02 2.446326e+00
## will 1.274727e+00 6.125150e-01 2.713477e+00
## wife 1.222122e+00 5.145326e-01 2.845687e+00
## her 1.302371e+00 8.548016e-11 1.366712e+10
## son 1.068531e+00 5.556994e-01 2.044619e+00
## goals 6.893628e-01 2.857589e-01 1.630057e+00
## discussion 2.284116e+00 7.725436e-01 6.981762e+00
## be 2.986614e-01 1.520719e-03 2.819434e+01
## daughter 9.487572e-01 4.360776e-01 2.034743e+00
## confirmed 3.128135e+00 1.380697e+00 7.189474e+00
## hcp 9.725294e-01 4.213840e-01 2.213604e+00
## would 9.918525e-01 5.063883e-01 1.926032e+00
## his 1.581665e+00 3.149524e-01 8.507757e+00
## dnrdni 1.221857e+00 4.604711e-01 3.232037e+00
## this 1.187227e+00 5.479813e-01 2.615305e+00
## that 7.316602e-01 3.621112e-01 1.459236e+00
## comfort 1.418303e+00 6.870861e-01 2.907420e+00
## patients 4.206356e-01 1.607737e-01 1.043801e+00
## husband 1.411594e+00 4.192239e-01 4.632343e+00
## consent 6.895489e-01 1.813223e-01 2.450391e+00
## who 1.805593e+00 9.379043e-01 3.488615e+00
## we 2.117621e+00 4.161734e-01 1.315305e+01
## spoke 2.367749e+00 5.454513e-01 9.933434e+00
## have 1.165244e+00 6.134287e-01 2.220314e+00
## plan 1.374916e+07 2.546632e-98 NA
## icu 7.074388e-08 1.110138e-20 4.982158e+05
## yesterday 1.909439e+00 9.469676e-01 3.860932e+00
## today 1.052352e+00 5.555244e-01 1.993767e+00
## they 1.638577e+00 5.432932e-01 4.971899e+00
## met 8.409674e-01 3.993832e-01 1.786011e+00
## comments 7.174124e-01 1.995374e-01 2.735483e+00
## after 1.000748e+00 5.351740e-01 1.856378e+00
## signed 2.050047e+00 5.172111e-01 7.901273e+00
## him 2.748255e+00 9.591694e-01 7.995935e+00
## decision 1.097943e+00 3.779591e-01 3.109322e+00
## but 8.532497e-01 3.503299e-01 2.118238e+00
## team 1.953728e+00 8.872755e-01 4.289326e+00
## prognosis 1.202643e+00 4.876817e-01 2.896382e+00
## like 6.312484e-01 2.656635e-01 1.508058e+00
## are 5.579361e+00 1.305334e-01 5.790743e+02
## pts 7.693394e-01 2.551454e-01 2.249317e+00
## pt 2.404234e-01 4.959423e-02 1.381489e+00
## dnr 1.654561e+00 6.234723e-01 4.439366e+00
## discuss 1.664170e+00 6.237237e-01 4.338159e+00
## update 1.483508e+01 2.095409e+00 1.477647e+02
## rounds 3.735567e-01 1.125219e-01 1.191562e+00
## length 1.523778e+00 1.802792e-01 1.727527e+01
## aware 1.246204e+00 4.365623e-01 3.389276e+00
## night 1.502685e+00 8.232716e-01 2.751794e+00
confusion_data(fam_reg)
## Maximum accuracy is acheived at a cutoff of: 0.4
##
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 276 35
## 1 35 102
##
## Accuracy : 0.8438
## 95% CI : (0.8072, 0.8744)
## No Information Rate : 0.6942
## P-Value [Acc > NIR] : 2.15e-13
##
## Kappa : 0.6320
## Mcnemar's Test P-Value : 1
##
## Sensitivity : 0.8875
## Specificity : 0.7445
## Pos Pred Value : 0.8875
## Neg Pred Value : 0.7445
## Prevalence : 0.6942
## Detection Rate : 0.6161
## Detection Prevalence : 0.6942
## Balanced Accuracy : 0.8160
## F-val Accuracy : 0.8875
##
## 'Positive' Class : 0
model_info(cim_reg)
## Waiting for profiling to be done...
## $`Model Summary`
##
## Call:
## glm(formula = CIM ~ ., family = binomial(link = "logit"), data = cim_tmp)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6501 -0.6198 0.0000 0.3483 2.4737
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.190e+01 5.919e+03 -0.009 0.99300
## code -2.580e+00 3.252e+00 -0.793 0.42753
## status -2.466e+00 1.449e+00 -1.702 0.08883 .
## dnr 3.715e+00 7.812e-01 4.756 1.98e-06 ***
## family 2.142e+00 7.132e-01 3.003 0.00267 **
## dni 5.497e-01 5.356e-01 1.026 0.30475
## full -5.707e-01 6.297e-01 -0.906 0.36477
## care 3.030e+00 1.465e+00 2.068 0.03861 *
## patient 3.541e-01 5.478e-01 0.646 0.51800
## dnrdni -9.071e-01 9.774e-01 -0.928 0.35337
## would 8.205e-01 3.782e-01 2.169 0.03006 *
## cmo 5.012e-01 8.049e-01 0.623 0.53354
## comfort 2.571e-01 4.212e-01 0.610 0.54167
## be -2.397e+00 8.383e+00 -0.286 0.77491
## do 3.704e+01 5.670e+03 0.007 0.99479
## that -4.337e-02 3.865e-01 -0.112 0.91064
## confirmed 1.148e-01 5.103e-01 0.225 0.82204
## but -3.306e-01 4.457e-01 -0.742 0.45821
## want 2.468e-02 6.211e-01 0.040 0.96830
## resuscitate 4.743e-01 6.600e-01 0.719 0.47234
## her -1.672e+01 1.700e+03 -0.010 0.99215
## measures 3.237e+00 1.945e+00 1.665 0.09601 .
## made 6.897e-02 7.814e-01 0.088 0.92967
## goals -9.306e-02 5.649e-01 -0.165 0.86916
## like -3.657e-01 4.421e-01 -0.827 0.40808
## his -3.584e-03 7.929e-01 -0.005 0.99639
## only -3.616e-02 4.385e-01 -0.082 0.93429
## will 2.740e-02 4.264e-01 0.064 0.94876
## meeting -7.299e-02 4.121e-01 -0.177 0.85940
## discussion 8.844e-01 6.029e-01 1.467 0.14245
## she 6.458e+00 3.266e+00 1.977 0.04800 *
## now 1.718e-01 5.690e-01 0.302 0.76272
## pressors -7.352e-01 3.995e-01 -1.840 0.06571 .
## patients 4.356e-01 4.901e-01 0.889 0.37407
## decision -5.868e-01 7.757e-01 -0.756 0.44938
## daughter 6.044e-01 5.285e-01 1.144 0.25281
## central 7.007e-01 4.475e-01 1.566 0.11742
## son -2.267e-01 3.752e-01 -0.604 0.54575
## pt -1.264e-01 1.095e+00 -0.115 0.90810
## per -9.911e-01 1.386e+00 -0.715 0.47447
## hcp 8.898e-02 5.440e-01 0.164 0.87006
## focus -4.812e-01 1.110e+00 -0.434 0.66452
## invasive 5.052e-01 3.804e-01 1.328 0.18410
## discussed -5.864e-01 4.285e-01 -1.368 0.17116
## procedures -1.576e-01 1.212e+00 -0.130 0.89653
## aggressive 2.636e-01 4.984e-01 0.529 0.59692
## they 7.885e-01 7.089e-01 1.112 0.26605
## escalation 4.450e+01 2.982e+03 0.015 0.98809
## after 2.331e-01 3.456e-01 0.674 0.50010
## wife 2.878e-01 5.090e-01 0.565 0.57182
## this 9.740e-01 4.287e-01 2.272 0.02309 *
## by -9.936e-01 3.658e-01 -2.716 0.00660 **
## plan 2.798e+01 2.404e+03 0.012 0.99071
## intubation 1.444e-01 3.569e-01 0.405 0.68570
## compressions 2.013e+00 1.125e+00 1.790 0.07349 .
## we 7.862e-01 7.264e-01 1.082 0.27911
## lines -5.418e-01 9.956e-01 -0.544 0.58632
## including -3.753e-01 3.696e-01 -1.015 0.30987
## changed -6.125e-01 4.277e-01 -1.432 0.15211
## wishes 1.592e+01 2.149e+03 0.007 0.99409
## prognosis 1.092e+00 6.254e-01 1.747 0.08072 .
## `if` 4.992e-01 5.910e-01 0.845 0.39821
## home -4.553e-01 3.587e-01 -1.269 0.20430
## given -8.774e-01 4.299e-01 -2.041 0.04127 *
## chest -7.414e-02 3.731e-01 -0.199 0.84247
## states -4.128e-01 7.937e-01 -0.520 0.60301
## make 1.041e-01 5.689e-01 0.183 0.85477
## have 9.542e-03 3.461e-01 0.028 0.97801
## any -4.811e-02 3.218e-01 -0.150 0.88115
## agreed 1.961e+01 2.494e+03 0.008 0.99373
## should -3.508e-01 4.698e-01 -0.747 0.45524
## morphine 7.178e-01 4.094e-01 1.753 0.07956 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 620.92 on 447 degrees of freedom
## Residual deviance: 320.46 on 376 degrees of freedom
## AIC: 464.46
##
## Number of Fisher Scoring iterations: 18
##
##
## $`OR Summary`
## OR 2.5 % 97.5 %
## (Intercept) 2.885650e-23 0.000000e+00 2.646738e+61
## code 7.578228e-02 2.661129e-05 1.069862e+01
## status 8.494883e-02 4.310744e-03 1.330946e+00
## dnr 4.106270e+01 9.858946e+00 2.182962e+02
## family 8.513799e+00 2.196802e+00 2.177634e+01
## dni 1.732679e+00 3.450162e+00 3.255335e+00
## full 5.651378e-01 1.646408e-01 1.992721e+00
## care 2.070067e+01 1.552141e+00 4.413957e+02
## patient 1.424936e+00 4.956526e-01 4.298734e+00
## dnrdni 4.036831e-01 1.263184e-01 1.451456e-01
## would 2.271657e+00 1.087450e+00 4.818322e+00
## cmo 1.650652e+00 3.506301e-01 8.703063e+00
## comfort 1.293139e+00 5.591895e-01 2.938809e+00
## be 9.096011e-02 1.246728e-05 8.403369e+03
## do 1.214421e+16 2.596649e-65 Inf
## that 9.575520e-01 4.481980e-01 2.051531e+00
## confirmed 1.121620e+00 4.051863e-01 3.031724e+00
## but 7.184762e-01 2.988812e-01 1.726774e+00
## want 1.024988e+00 2.995983e-01 2.130950e+00
## resuscitate 1.606940e+00 1.832075e+00 3.504325e+00
## her 5.464928e-08 9.896027e-285 1.474195e+18
## measures 2.545304e+01 9.564055e-01 3.216326e+02
## made 1.071404e+00 2.297233e-01 5.052974e+00
## goals 9.111375e-01 2.985831e-01 2.763026e+00
## like 6.936830e-01 2.898714e-01 1.653204e+00
## his 9.964219e-01 2.092106e-01 4.771258e+00
## only 9.644866e-01 5.535863e-01 2.265932e+00
## will 1.027781e+00 1.076605e+00 1.766525e+00
## meeting 9.296084e-01 5.529164e-01 2.071458e+00
## discussion 2.421420e+00 7.342459e-01 7.949132e+00
## she 6.375368e+02 4.256973e+01 7.300542e+05
## now 1.187417e+00 3.924637e-01 2.426262e+00
## pressors 4.793933e-01 2.133629e-01 1.030478e+00
## patients 1.545934e+00 5.897881e-01 4.067884e+00
## decision 5.561300e-01 1.176322e-01 2.529543e+00
## daughter 1.830116e+00 6.517975e-01 5.221823e+00
## central 2.015112e+00 8.336656e-01 4.861361e+00
## son 7.971873e-01 3.777300e-01 1.231040e+00
## pt 8.812364e-01 1.126270e-01 9.293417e+00
## per 3.711692e-01 2.158453e-02 5.962546e+00
## hcp 1.093062e+00 3.725100e-01 3.175969e+00
## focus 6.180348e-01 6.003227e-02 5.048877e+00
## invasive 1.657388e+00 1.056791e+00 9.875537e-01
## discussed 5.563440e-01 2.359661e-01 1.274601e+00
## procedures 8.541675e-01 6.933518e-02 7.844775e+00
## aggressive 1.301557e+00 4.813022e-01 3.437713e+00
## they 2.200057e+00 5.425214e-01 8.993352e+00
## escalation 2.129323e+19 2.376448e-26 Inf
## after 1.262467e+00 6.407945e-01 2.496608e+00
## wife 1.333482e+00 4.876861e-01 3.626664e+00
## this 2.648543e+00 1.163660e+00 6.288271e+00
## by 3.702260e-01 1.773696e-01 7.479320e-01
## plan 1.420346e+12 8.780789e-24 Inf
## intubation 1.155383e+00 5.740775e-01 2.338198e+00
## compressions 7.488880e+00 8.659329e-01 8.119132e+01
## we 2.194974e+00 5.365602e-01 9.441300e+00
## lines 5.816969e-01 8.566180e-02 4.367200e+00
## including 6.870564e-01 3.300410e-01 1.054915e+00
## changed 5.419887e-01 3.176291e-01 1.246431e+00
## wishes 8.196015e+06 1.421102e-24 Inf
## prognosis 2.980936e+00 8.796571e-01 1.037426e+01
## `if` 1.647480e+00 5.326832e-01 4.237530e+00
## home 6.342540e-01 3.096227e-01 1.269831e+00
## given 4.158655e-01 1.772297e-01 9.628503e-01
## chest 9.285429e-01 4.462324e-01 1.936053e+00
## states 6.618230e-01 1.202202e-01 1.678618e+00
## make 1.109738e+00 3.564363e-01 3.364097e+00
## have 1.009587e+00 6.713153e-01 1.084051e+00
## any 9.530334e-01 8.588421e-01 1.389834e+00
## agreed 3.276214e+08 8.875568e-27 Inf
## should 7.040969e-01 2.744878e-01 1.746755e+00
## morphine 2.050020e+00 9.197753e-01 4.609946e+00
confusion_data(cim_reg)
## Maximum accuracy is acheived at a cutoff of: 0.49
##
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 202 48
## 1 18 180
##
## Accuracy : 0.8527
## 95% CI : (0.8169, 0.8825)
## No Information Rate : 0.5089
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.7060
## Mcnemar's Test P-Value : 3.57e-04
##
## Sensitivity : 0.9182
## Specificity : 0.7895
## Pos Pred Value : 0.8080
## Neg Pred Value : 0.9091
## Prevalence : 0.4911
## Detection Rate : 0.4509
## Detection Prevalence : 0.4911
## Balanced Accuracy : 0.8538
## F-val Accuracy : 0.8596
##
## 'Positive' Class : 0
txts <- clean_text(dat$TEXT[dat$COHORT == "validation"], FALSE)
#Strict regex
lim_tmp <- strict_regex(lim_bow, txts)
cod_tmp <- strict_regex(cod_bow, txts)
car_tmp <- strict_regex(car_bow, txts)
pal_tmp <- strict_regex(pal_bow, txts)
fam_tmp <- strict_regex(fam_bow, txts)
#CIM
cim_tmp <- strict_regex(cim_bow, txts)
#Convert list to data.frame
lim_tmp <- to_df(lim_tmp, lim_bow)
cod_tmp <- to_df(cod_tmp, cod_bow)
car_tmp <- to_df(car_tmp, car_bow)
pal_tmp <- to_df(pal_tmp, pal_bow)
fam_tmp <- to_df(fam_tmp, fam_bow)
#CIM
cim_tmp <- to_df(cim_tmp, cim_bow)
#cbind data
LIM <- dat$LIM[dat$COHORT == "validation"]
lim_tmp <- cbind(LIM, lim_tmp)
#Note: NA's must be omitted for COD due to missing observations
COD <- dat$COD[dat$COHORT == "validation"]
cod_tmp <- na.omit(cbind(COD, cod_tmp))
CAR <- dat$CAR[dat$COHORT == "validation"]
car_tmp <- cbind(CAR, car_tmp)
PAL <- dat$PAL[dat$COHORT == "validation"]
pal_tmp <- cbind(PAL, pal_tmp)
FAM <- dat$FAM[dat$COHORT == "validation"]
fam_tmp <- cbind(FAM, fam_tmp)
CIM <- dat$CIM[dat$COHORT == "validation"]
cim_tmp <- cbind(CIM, cim_tmp)
Note: probabilities associated with highest accuracy will be used as cutoffs:
#Subset data for validation set
valid <- dat[dat$COHORT == "validation",]
#Subset additional set for COD validation
cod_valid <- na.omit(dat[dat$COHORT == "validation",])
#Generate probability values
LIM_PRED <- predict(lim_reg, lim_tmp, type="response")
COD_PRED <- predict(cod_reg, cod_tmp, type="response")
CAR_PRED <- predict(car_reg, car_tmp, type="response")
PAL_PRED <- predict(pal_reg, pal_tmp, type="response")
FAM_PRED <- predict(fam_reg, fam_tmp, type="response")
CIM_PRED <- predict(cim_reg, cim_tmp, type="response")
#Show distribution of probabilities
boxplot(LIM_PRED, COD_PRED, CAR_PRED, PAL_PRED, FAM_PRED, CIM_PRED, main = "Note Prediction Probability Distributions\n (LIM) (COD) (CAR) (PAL) (FAM) (CIM)")
#Apply predictions given cutoff probability
LIM_PRED <- ifelse(LIM_PRED > 0.63, 1, 0)
COD_PRED <- ifelse(COD_PRED > 0.59, 1, 0)
CAR_PRED <- ifelse(CAR_PRED > 0.48, 1, 0)
PAL_PRED <- ifelse(PAL_PRED > 0.47, 1, 0)
FAM_PRED <- ifelse(FAM_PRED > 0.40, 1, 0)
CIM_PRED <- ifelse(CIM_PRED > 0.49, 1, 0)
valid <- cbind(valid,
LIM_PRED,
#COD_PRED,
CAR_PRED,
PAL_PRED,
FAM_PRED,
CIM_PRED)
cod_valid <- cbind(cod_valid, COD_PRED)
results <- rbind(stat_gen(valid, "LIM_PRED"),
stat_gen(cod_valid, "COD_PRED"),
stat_gen(valid, "CAR_PRED"),
stat_gen(valid, "PAL_PRED"),
stat_gen(valid, "FAM_PRED"),
stat_gen(valid, "CIM_PRED"))
row.names(results) <- c("LIM", "COD", "CAR", "PAL", "FAM", "CIM")
results <- model_stats(results)
print(results)
## tp tn fp fn accuracy precision sensitivity specificity F1
## LIM 41 114 7 30 80.73 85.42 57.75 94.21 68.91
## COD 88 41 8 5 90.85 91.67 94.62 83.67 93.12
## CAR 13 151 14 14 85.42 48.15 48.15 91.52 48.15
## PAL 1 191 0 0 100.00 100.00 100.00 100.00 100.00
## FAM 20 141 19 12 83.85 51.28 62.50 88.12 56.34
## CIM 49 89 25 29 71.88 66.22 62.82 78.07 64.47
results$domain <- row.names(results)
#Save Results
write.csv(results, file = "/Users/Edward/Desktop/bow_model_results28Jan18.csv", row.names = T)
#Remove tp, tn, fp, fn
results$tp <- NULL
results$tn <- NULL
results$fp <- NULL
results$fn <- NULL
#Melt results for long data
results <- melt(results)
## Using domain as id variables
ggplot(results, aes(x = domain, y = value, label = value, group = variable)) +
geom_bar(stat = "identity", aes(fill = variable), colour = "black" , position = position_dodge()) +
xlab("Domain") + ylab("Value") +
ggtitle("Model Metrics By Domain") +
geom_text(aes(x = domain, y = value, label = round(value, 1), group = variable),
vjust = -1,
position = position_dodge(width = 0.9),
size = 2, fontface = "bold") +
scale_fill_brewer(palette = "Set3") + #Set3 is good, empty yields blues
theme_minimal()# +
#geom_text_repel(data=results, aes(label=value))